HOME
*





Prime Ideals
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological algebra, homological properties and Polynomial identity ring, polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclid's Lemma
In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers, namely: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In fact, . If the premise of the lemma does not hold, i.e., is a composite number, its consequent may be either true or false. For example, in the case of , , , composite number 10 divides , but 10 divides neither 4 nor 15. This property is the key in the proof of the fundamental theorem of arithmetic. It is used to define prime elements, a generalization of prime numbers to arbitrary commutative rings. Euclid's Lemma shows that in the integers irreducible elements are also prime elements. The proof uses induction so it does not apply to all integral domains. Formulations Euclid's lemma is commonly used in the following equivalent form: Euclid's lemma can be generalized as follows from prime numbers to any integers. This is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Polynomial
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as \left(x - \sqrt\right)\left(x + \sqrt\right) if it is considered as a polynomial with real coefficients. One says that the polynomial is irreducible over the integers but not over the reals. Polynomial irreducibility can be considered for polynomials with coefficients in an integral domain, and there are two common definitions. Most often, a p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Polynomial Ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is that of the ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique Factorization Domain
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of prime elements (or irreducible elements), uniquely up to order and units. Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field. Unique factorization domains appear in the following chain of class inclusions: Definition Formally, a unique factorization domain is defined to be an integral domain ''R'' in which every non-zero element ''x'' of ''R'' can be written as a product (an empty product if ''x'' is a unit) of irreducible elements ''p''i of ''R'' and a uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eisenstein's Criterion
In mathematics, Eisenstein's criterion gives a sufficient condition for a polynomial with integer coefficients to be irreducible over the rational numbers – that is, for it to not be factorizable into the product of non-constant polynomials with rational coefficients. This criterion is not applicable to all polynomials with integer coefficients that are irreducible over the rational numbers, but it does allow in certain important cases for irreducibility to be proved with very little effort. It may apply either directly or after transformation of the original polynomial. This criterion is named after Gotthold Eisenstein. In the early 20th century, it was also known as the Schönemann–Eisenstein theorem because Theodor Schönemann was the first to publish it. Criterion Suppose we have the following polynomial with integer coefficients. : Q(x)=a_nx^n+a_x^+\cdots+a_1x+a_0 If there exists a prime number such that the following three conditions all apply: * divides each fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principal Ideal Domain
In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot. Principal ideal domains are thus mathematical objects that behave somewhat like the integers, with respect to divisibility: any element of a PID has a unique decomposition into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If and are elements of a PID without common divisors, then every element of the PID can be written in the form . Principal ideal domains are noetherian, they are integra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Element
In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. Definition An element of a commutative ring is said to be prime if it is not the zero element or a unit and whenever divides for some and in , then divides or divides . With this definition, Euclid's lemma is the assertion that prime numbers are prime elements in the ring of integers. Equivalently, an element is prime if, and only if, the principal ideal generated by is a nonzero prime ideal. (Note that in an integral domain, the ideal is a prime ideal, but is an exception in the definition of 'prime element'.) Interest in prime elements comes from the fundamental theorem of arithmetic, which asserts that each nonzero in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Domain
In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element ''a'' has the cancellation property, that is, if , an equality implies . "Integral domain" is defined almost universally as above, but there is some variation. This article follows the convention that rings have a multiplicative identity, generally denoted 1, but some authors do not follow this, by not requiring integral domains to have a multiplicative identity. Noncommutative integral domains are sometimes admitted. This article, however, follows the much more usual convention of reserving the term "integral domain" for the commutative case and using "domain" for the general case including noncommutative rings. Some sources, notably Lang, use the term entir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]