Antifundamental Representation
   HOME
*





Antifundamental Representation
In mathematics differential geometry, an antifundamental representation of a Lie group is the complex conjugate of the fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible representation, irreducible finite-dimensional representation of a semisimple Lie algebra, semisimple Lie group or Lie algebra whose highest weig ...,. although the distinction between the fundamental and the antifundamental representation is a matter of convention. However, these two are often non-equivalent, because each of them is a complex representation. References Representation theory of Lie groups {{differential-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Representation
In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defining module of a classical Lie group is a fundamental representation. Any finite-dimensional irreducible representation of a semisimple Lie group or Lie algebra can be constructed from the fundamental representations by a procedure due to Élie Cartan. Thus in a certain sense, the fundamental representations are the elementary building blocks for arbitrary finite-dimensional representations. Examples * In the case of the general linear group, all fundamental representations are exterior products of the defining module. * In the case of the special unitary group SU(''n''), the ''n'' − 1 fundamental representations are the wedge products \operatorname^k\ ^n consisting of the alternating tensors, for ''k'' = 1,&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Representation
In mathematics, a complex representation is a representation of a group (or that of Lie algebra) on a complex vector space. Sometimes (for example in physics), the term complex representation is reserved for a representation on a complex vector space that is neither real nor pseudoreal (quaternionic). In other words, the group elements are expressed as complex matrices, and the complex conjugate of a complex representation is a different, non-equivalent representation. For compact groups, the Frobenius-Schur indicator can be used to tell whether a representation is real, complex, or pseudo-real. For example, the N-dimensional fundamental representation of SU(N) for N greater than two is a complex representation whose complex conjugate is often called the antifundamental representation In mathematics differential geometry, an antifundamental representation of a Lie group is the complex conjugate of the fundamental representation In representation theory of Lie groups and Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]