HOME
*





Complex Representation
In mathematics, a complex representation is a representation of a group (or that of Lie algebra) on a complex vector space. Sometimes (for example in physics), the term complex representation is reserved for a representation on a complex vector space that is neither real nor pseudoreal (quaternionic). In other words, the group elements are expressed as complex matrices, and the complex conjugate of a complex representation is a different, non-equivalent representation. For compact groups, the Frobenius-Schur indicator can be used to tell whether a representation is real, complex, or pseudo-real. For example, the N-dimensional fundamental representation of SU(N) for N greater than two is a complex representation whose complex conjugate is often called the antifundamental representation In mathematics differential geometry, an antifundamental representation of a Lie group is the complex conjugate of the fundamental representation In representation theory of Lie groups and Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra Representation
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space V together with a collection of operators on V satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators. The notion is closely related to that of a representation of a Lie group. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the universal cover of a Lie group are the integrated form of the representations of its Lie algebra. In the study of representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The universa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Representation
In the mathematical field of representation theory a real representation is usually a representation on a real vector space ''U'', but it can also mean a representation on a complex vector space ''V'' with an invariant real structure, i.e., an antilinear equivariant map :j\colon V\to V which satisfies :j^2=+1. The two viewpoints are equivalent because if ''U'' is a real vector space acted on by a group ''G'' (say), then ''V'' = ''U''⊗C is a representation on a complex vector space with an antilinear equivariant map given by complex conjugation. Conversely, if ''V'' is such a complex representation, then ''U'' can be recovered as the fixed point set of ''j'' (the eigenspace with eigenvalue 1). In physics, where representations are often viewed concretely in terms of matrices, a real representation is one in which the entries of the matrices representing the group elements are real numbers. These matrices can act either on real or complex column vectors. A real representati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoreal Representation
In mathematical field of representation theory, a quaternionic representation is a representation on a complex vector space ''V'' with an invariant quaternionic structure, i.e., an antilinear equivariant map :j\colon V\to V which satisfies :j^2=-1. Together with the imaginary unit ''i'' and the antilinear map ''k'' := ''ij'', ''j'' equips ''V'' with the structure of a quaternionic vector space (i.e., ''V'' becomes a module over the division algebra of quaternions). From this point of view, quaternionic representation of a group ''G'' is a group homomorphism ''φ'': ''G'' → GL(''V'', H), the group of invertible quaternion-linear transformations of ''V''. In particular, a quaternionic matrix representation of ''g'' assigns a square matrix of quaternions ''ρ''(g) to each element ''g'' of ''G'' such that ''ρ''(e) is the identity matrix and :\rho(gh)=\rho(g)\rho(h)\textg, h \in G. Quaternionic representations of associative and Lie algebras can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Representation
In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defining module of a classical Lie group is a fundamental representation. Any finite-dimensional irreducible representation of a semisimple Lie group or Lie algebra can be constructed from the fundamental representations by a procedure due to Élie Cartan. Thus in a certain sense, the fundamental representations are the elementary building blocks for arbitrary finite-dimensional representations. Examples * In the case of the general linear group, all fundamental representations are exterior products of the defining module. * In the case of the special unitary group SU(''n''), the ''n'' − 1 fundamental representations are the wedge products \operatorname^k\ ^n consisting of the alternating tensors, for ''k'' = 1,&nbs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antifundamental Representation
In mathematics differential geometry, an antifundamental representation of a Lie group is the complex conjugate of the fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible representation, irreducible finite-dimensional representation of a semisimple Lie algebra, semisimple Lie group or Lie algebra whose highest weig ...,. although the distinction between the fundamental and the antifundamental representation is a matter of convention. However, these two are often non-equivalent, because each of them is a complex representation. References Representation theory of Lie groups {{differential-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]