HOME
*





Zariski Surface
In algebraic geometry, a branch of mathematics, a Zariski surface is a surface over a field of characteristic ''p'' > 0 such that there is a dominant inseparable map of degree ''p'' from the projective plane to the surface. In particular, all Zariski surfaces are unirational. They were named by Piotr Blass in 1977 after Oscar Zariski who used them in 1958 to give examples of unirational surfaces in characteristic ''p'' > 0 that are not rational. (In characteristic 0 by contrast, Castelnuovo's theorem implies that all unirational surfaces are rational.) Zariski surfaces are birational to surfaces in affine 3-space ''A''3 defined by irreducible polynomials of the form :z^p = f(x, y).\ The following problem was posed by Oscar Zariski in 1971: Let ''S'' be a Zariski surface with vanishing geometric genus. Is S necessarily a rational surface? For ''p'' = 2 and for ''p'' = 3 the answer to the above problem is negative as shown in 1977 by Piotr Blass in his U ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surface (mathematics)
In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line. There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and spheres in the Euclidean 3-space. The exact definition of a surface may depend on the context. Typically, in algebraic geometry, a surface may cross itself (and may have other singularities), while, in topology and differential geometry, it may not. A surface is a topological space of dimension two; this means that a moving point on a surface may move in two directions (it has two degrees of freedom). In other words, around almost every point, there is a ''coordinate patch'' on which a two-dimensional coordinate system is defined. For example, the surface of the Earth resembles (ideally) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest number of times one must use the ring's identity element, multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective plane, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unirational
In mathematics, a rational variety is an algebraic variety, over a given field ''K'', which is birationally equivalent to a projective space of some dimension over ''K''. This means that its function field is isomorphic to :K(U_1, \dots , U_d), the field of all rational functions for some set \ of indeterminates, where ''d'' is the dimension of the variety. Rationality and parameterization Let ''V'' be an affine algebraic variety of dimension ''d'' defined by a prime ideal ''I'' = ⟨''f''1, ..., ''f''''k''⟩ in K _1, \dots , X_n/math>. If ''V'' is rational, then there are ''n'' + 1 polynomials ''g''0, ..., ''g''''n'' in K(U_1, \dots , U_d) such that f_i(g_1/g_0, \ldots, g_n/g_0)=0. In order words, we have a x_i=\frac(u_1,\ldots,u_d) of the variety. Conversely, such a rational parameterization induces a field homomorphism of the field of functions of ''V'' into K(U_1, \dots , U_d). But this homomorphism is not necessarily onto. If such a parameterizati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Oscar Zariski
, birth_date = , birth_place = Kobrin, Russian Empire , death_date = , death_place = Brookline, Massachusetts, United States , nationality = American , field = Mathematics , work_institutions = Johns Hopkins UniversityUniversity of IllinoisHarvard University , alma_mater = University of Kyiv University of Rome , doctoral_advisor = Guido Castelnuovo , doctoral_students = S. S. AbhyankarMichael Artin Iacopo BarsottiIrvin CohenDaniel GorensteinRobin Hartshorne Heisuke Hironaka Steven KleimanJoseph LipmanDavid MumfordMaxwell RosenlichtPierre SamuelAbraham Seidenberg , known_for = Contributions to algebraic geometry , prizes = Cole Prize in Algebra (1944)National Medal of Science (1965)Wolf Prize (1981) Steele Prize (1981) , footnotes = Oscar Zariski (April 24, 1899 – July 4, 1986) was a Russian-born American mathematician and one of the most influential algebraic geometers of the 20th cent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Castelnuovo's Theorem
In algebraic geometry, a branch of mathematics, a rational surface is a surface birationally equivalent to the projective plane, or in other words a rational variety of dimension two. Rational surfaces are the simplest of the 10 or so classes of surface in the Enriques–Kodaira classification of complex surfaces, and were the first surfaces to be investigated. Structure Every non-singular rational surface can be obtained by repeatedly blowing up a minimal rational surface. The minimal rational surfaces are the projective plane and the Hirzebruch surfaces Σ''r'' for ''r'' = 0 or ''r'' ≥ 2. Invariants: The plurigenera are all 0 and the fundamental group is trivial. Hodge diamond: where ''n'' is 0 for the projective plane, and 1 for Hirzebruch surfaces and greater than 1 for other rational surfaces. The Picard group is the odd unimodular lattice I1,''n'', except for the Hirzebruch surfaces Σ2''m'' when it is the even unimodular lattice II1,1. Castelnuovo's theorem Guido Caste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birational Isomorphism
In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Definition Formal definition Formally, a rational map f \colon V \to W between two varieties is an equivalence class of pairs (f_U, U) in which f_U is a morphism of varieties from a non-empty open set U\subset V to W, and two such pairs (f_U, U) and (_, U') are considered equivalent if f_U and _ coincide on the intersection U \cap U' (this is, in particular, vacuously true if the intersection is empty, but since V is assumed irreducible, this is impossible). The proof that this defines an equivalence relation relies on the following lemma: * If two morphisms of varieties are equal on some non-empty open set, then they are equal. f is said to be birational if there exists a rational map g \colon W \to V which is its inverse, where the composition is taken i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point. In an affine space, there are instead ''displacement vectors'', also called ''translation'' vectors or simply ''translations'', between two points of the space. Thus it makes sense to subtract two points of the space, giving a translation vector, but it does not make sense to add two points of the space. Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. Any vector space may be viewed as an affine spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Polynomial
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as \left(x - \sqrt\right)\left(x + \sqrt\right) if it is considered as a polynomial with real coefficients. One says that the polynomial is irreducible over the integers but not over the reals. Polynomial irreducibility can be considered for polynomials with coefficients in an integral domain, and there are two common definitions. Most often, a p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]