HOME
*



picture info

ZX-calculus Green State
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graphical Modeling Language
A modeling language is any artificial language that can be used to express information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure. Overview A modeling language can be graphical or textual. * ''Graphical'' modeling languages use a diagram technique with named symbols that represent concepts and lines that connect the symbols and represent relationships and various other graphical notation to represent constraints. * ''Textual'' modeling languages may use standardized keywords accompanied by parameters or natural language terms and phrases to make computer-interpretable expressions. An example of a graphical modeling language and a corresponding textual modeling language is EXPRESS. Not all modeling languages are executable, and for those that are, the use of them doesn't necessarily mean that programmers are no longer required. On the contrary, executab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zx-calculus Yellow Hadamard Gate
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ZX-calculus Red Phase Shift
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pauli Matrices
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () when used in connection with isospin symmetries. \begin \sigma_1 = \sigma_\mathrm &= \begin 0&1\\ 1&0 \end \\ \sigma_2 = \sigma_\mathrm &= \begin 0& -i \\ i&0 \end \\ \sigma_3 = \sigma_\mathrm &= \begin 1&0\\ 0&-1 \end \\ \end These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation which takes into account the interaction of the spin of a particle with an external electromagnetic field. They also represent the interaction states of two polarization filters for horizontal/vertical polarization, 45 degree polarization (right/left), and circular polarization (right/left). Each Pauli matrix is Hermitian, and together with the iden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bloch Sphere
In quantum quantum mechanics, mechanics and Quantum computing, computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level system, two-level quantum mechanical system (qubit), named after the physicist Felix Bloch. Quantum mechanics is mathematically formulated in Hilbert space or projective Hilbert space. The pure states of a quantum system correspond to the one-dimensional subspaces of the corresponding Hilbert space (and the "points" of the projective Hilbert space). For a two-dimensional Hilbert space, the space of all such states is the complex projective line \mathbb^1. This is the Bloch sphere, which can be mapped to the Riemann sphere. The Bloch sphere is a unit N-sphere, 2-sphere, with antipodal points corresponding to a pair of mutually orthogonal state vectors. The north and south poles of the Bloch sphere are typically chosen to correspond to the standard basis vectors , 0\rangle and , 1\rangle, respectively, which in turn migh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ZX-calculus Green Phase Shift
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ZX-calculus Red State
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ZX-calculus Green State
The ZX-calculus is a rigorous graphical language for reasoning about linear maps between qubits, which are represented as string diagrams called ''ZX-diagrams''. A ZX-diagram consists of a set of generators called ''spiders'' that represent specific tensors. These are connected together to form a tensor network similar to Penrose graphical notation. Due to the symmetries of the spiders and the properties of the underlying category, topologically deforming a ZX-diagram (i.e. moving the generators without changing their connections) does not affect the linear map it represents. In addition to the equalities between ZX-diagrams that are generated by topological deformations, the calculus also has a set of graphical rewrite rules for transforming diagrams into one another. The ZX-calculus is ''universal'' in the sense that any linear map between qubits can be represented as a diagram, and different sets of graphical rewrite rules are complete for different families of linear maps. Z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projection (linear Algebra)
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it were applied once (i.e. P is idempotent). It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object. Definitions A projection on a vector space V is a linear operator P : V \to V such that P^2 = P. When V has an inner product and is complete (i.e. when V is a Hilbert space) the concept of orthogonality can be used. A projection P on a Hilbert space V is called an orthogonal projection if it satisfies \langle P \mathbf x, \mathbf y \rangle = \langle \mathbf x, P \mathbf y \rangle for all \mathbf x, \mathbf y \in V. A projection on a Hilbert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". Introduction Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection. Isometries are often used in constructions where one space i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum State
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces. Pure states are also known as state vectors or wave functions, the latter term applying particularly when they are represented as functions of position or momentum. For example, when dealing with the energy spectrum of the electron in a hydrogen at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]