Yangian
   HOME
*





Yangian
In representation theory, a Yangian is an infinite-dimensional Hopf algebra, a type of a quantum group. Yangians first appeared in physics in the work of Ludvig Faddeev and his school in the late 1970s and early 1980s concerning the quantum inverse scattering method. The name ''Yangian'' was introduced by Vladimir Drinfeld in 1985 in honor of C.N. Yang. Initially, they were considered a convenient tool to generate the solutions of the quantum Yang–Baxter equation. The center of the Yangian can be described by the quantum determinant. Description For any finite-dimensional semisimple Lie algebra ''a'', Drinfeld defined an infinite-dimensional Hopf algebra ''Y''(''a''), called the Yangian of ''a''. This Hopf algebra is a deformation of the universal enveloping algebra ''U''(''a'' 'z'' of the Lie algebra of polynomial loops of ''a'' given by explicit generators and relations. The relations can be encoded by identities involving a rational ''R''-matrix. Replacing it with a trigo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plefka
Jan Christoph Plefka (born 31 January 1968 in Hanau) is a German theoretical physicist working in the field of quantum field theory and string theory. Education After receiving the Abitur in Darmstadt and performing civil service in a hospital, Plefka studied physics at the Technical University of Darmstadt and Texas A&M University where he received his M.Sc. as a Fulbright Scholar. He received his PhD from the Leibniz University Hannover with a dissertation on supersymmetric Matrix Models in 1995. In 2003 he received the Habilitation at the Humboldt University Berlin. Career After postdoctoral work at the City College New York and Nikhef Amsterdam, he became a Junior Staff Member at the Albert Einstein Institute, Max Planck Institute for Gravitational Physics in 1998. In 2006, Plefka was awarded a Lichtenberg Professorship of the Volkswagen Foundation in quantum field and string theory at the Institute of Physics at Humboldt University Berlin, becoming Full Professor there in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yang–Baxter Equation
In physics, the Yang–Baxter equation (or star–triangle relation) is a consistency equation which was first introduced in the field of statistical mechanics. It depends on the idea that in some scattering situations, particles may preserve their momentum while changing their quantum internal states. It states that a matrix R, acting on two out of three objects, satisfies :(\check\otimes \mathbf)(\mathbf\otimes \check)(\check\otimes \mathbf) =(\mathbf\otimes \check)(\check \otimes \mathbf)(\mathbf\otimes \check) In one dimensional quantum systems, R is the scattering matrix and if it satisfies the Yang–Baxter equation then the system is integrable. The Yang–Baxter equation also shows up when discussing knot theory and the braid groups where R corresponds to swapping two strands. Since one can swap three strands two different ways, the Yang–Baxter equation enforces that both paths are the same. It takes its name from independent work of C. N. Yang from 1968, and R. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Molev
Alexander Ivanovich Molev (russian: Алекса́ндр Ива́нович Мо́лев) (born 1961) is a Russian- Australian mathematician. He completed his Ph.D. in 1986 under the supervision of Alexandre Kirillov at Moscow State University. He was awarded the Australian Mathematical Society Medal in 2001. Amongst other things, he has worked on Yangians and Lie algebras. He is currently a Professor in the School of Mathematics and Statistics, Faculty of Science, University of Sydney. Bibliography * Alexander Molev, ''Yangians and classical Lie algebras'', Mathematical Surveys and Monographs, 143. American Mathematical Society, Providence, RI, 2007. xviii+400 pp. * Alexander Molev, ''Sugawara Operators for Classical Lie Algebras'', Mathematical Surveys and Monographs, 229. American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Quantum Group
In mathematics, a quantum affine algebra (or affine quantum group) is a Hopf algebra that is a ''q''-deformation of the universal enveloping algebra of an affine Lie algebra. They were introduced independently by and as a special case of their general construction of a quantum group from a Cartan matrix. One of their principal applications has been to the theory of solvable lattice models in quantum statistical mechanics, where the Yang–Baxter equation occurs with a spectral parameter. Combinatorial aspects of the representation theory of quantum affine algebras can be described simply using crystal bases, which correspond to the degenerate case when the deformation parameter ''q'' vanishes and the Hamiltonian of the associated lattice model can be explicitly diagonalized. See also *Quantum enveloping algebra *Quantum KZ equations *Littelmann path model *Yangian In representation theory, a Yangian is an infinite-dimensional Hopf algebra, a type of a quantum group. Yangians fir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Affine Algebra
In mathematics, a quantum affine algebra (or affine quantum group) is a Hopf algebra that is a ''q''-deformation of the universal enveloping algebra of an affine Lie algebra. They were introduced independently by and as a special case of their general construction of a quantum group from a Cartan matrix. One of their principal applications has been to the theory of solvable lattice models in quantum statistical mechanics, where the Yang–Baxter equation occurs with a spectral parameter. Combinatorial aspects of the representation theory of quantum affine algebras can be described simply using crystal bases, which correspond to the degenerate case when the deformation parameter ''q'' vanishes and the Hamiltonian of the associated lattice model can be explicitly diagonalized. See also *Quantum enveloping algebra *Quantum KZ equations *Littelmann path model *Yangian In representation theory, a Yangian is an infinite-dimensional Hopf algebra, a type of a quantum group. Yangians f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Inverse Scattering Method
In quantum physics, the quantum inverse scattering method is a method for solving integrable models in 1+1 dimensions, introduced by L. D. Faddeev in 1979. The quantum inverse scattering method relates two different approaches: #the Bethe ansatz, a method of solving integrable quantum models in one space and one time dimension; #the Inverse scattering transform, a method of solving classical integrable differential equations of the evolutionary type. This method led to the formulation of quantum groups. Especially interesting is the Yangian, and the center of the Yangian is given by the quantum determinant. An important concept in the Inverse scattering transform is the Lax representation; the quantum inverse scattering method starts by the quantization of the Lax representation and reproduces the results of the Bethe ansatz. In fact, it allows the Bethe ansatz to be written in a new form: the ''algebraic Bethe ansatz''.cf. e.g. the lectures by N.A. Slavnov, This led to fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Doklady Akademii Nauk SSSR
The ''Proceedings of the USSR Academy of Sciences'' (russian: Доклады Академии Наук СССР, ''Doklady Akademii Nauk SSSR'' (''DAN SSSR''), french: Comptes Rendus de l'Académie des Sciences de l'URSS) was a Soviet journal that was dedicated to publishing original, academic research papers in physics, mathematics, chemistry, geology, and biology. It was first published in 1933 and ended in 1992 with volume 322, issue 3. Today, it is continued by ''Doklady Akademii Nauk'' (russian: Доклады Академии Наук), which began publication in 1992. The journal is also known as the ''Proceedings of the Russian Academy of Sciences (RAS)''. ''Doklady'' has had a complicated publication and translation history. A number of translation journals exist which publish selected articles from the original by subject section; these are listed below. History The Russian Academy of Sciences dates from 1724, with a continuous series of variously named publications dat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scattering Amplitude
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process.''Quantum Mechanics: Concepts and Applications''
By Nouredine Zettili, 2nd edition, page 623. Paperback 688 pages January 2009 The plane wave is described by the : \psi(\mathbf) = e^ + f(\theta)\frac \;, where \mathbf\equiv(x,y,z) is the position vector; r\equiv, \mathbf, ; e^ is the incoming plane wave with the



George Lusztig
George Lusztig (born ''Gheorghe Lusztig''; May 20, 1946) is an American-Romanian mathematician and Abdun Nur Professor at the Massachusetts Institute of Technology (MIT). He was a Norbert Wiener Professor in the Department of Mathematics from 1999 to 2009. Education and career Born in Timișoara to a Hungarian-Jewish family, he did his undergraduate studies at the University of Bucharest, graduating in 1968. Later that year he left Romania for the United Kingdom, where he spent several months at the University of Warwick and Oxford University. In 1969 he moved to the United States, where he went to work for two years with Michael Atiyah at the Institute for Advanced Study in Princeton, New Jersey. He received his PhD in mathematics in 1971 after completing a doctoral dissertation, titled "Novikov's higher signature and families of elliptic operators", under the supervision of William Browder and Michael Atiyah. Lusztig worked for almost seven years at the University of Warwic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Hecke Algebra
In mathematics, an affine Hecke algebra is the algebra associated to an affine Weyl group, and can be used to prove Macdonald's constant term conjecture for Macdonald polynomials. Definition Let V be a Euclidean space of a finite dimension and \Sigma an affine root system on V. An affine Hecke algebra is a certain associative algebra that deforms the group algebra \mathbb /math> of the Weyl group W of \Sigma (the affine Weyl group). It is usually denoted by H(\Sigma,q), where q:\Sigma\rightarrow \mathbb is multiplicity function that plays the role of deformation parameter. For q\equiv 1 the affine Hecke algebra H(\Sigma,q) indeed reduces to \mathbb /math>. Generalizations Ivan Cherednik introduced generalizations of affine Hecke algebras, the so-called double affine Hecke algebra (usually referred to as DAHA). Using this he was able to give a proof of Macdonald's constant term conjecture for Macdonald polynomials (building on work of Eric Opdam). Another main inspiration for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the representatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]