HOME
*





Quantum Affine Algebra
In mathematics, a quantum affine algebra (or affine quantum group) is a Hopf algebra that is a ''q''-deformation of the universal enveloping algebra of an affine Lie algebra. They were introduced independently by and as a special case of their general construction of a quantum group from a Cartan matrix. One of their principal applications has been to the theory of solvable lattice models in quantum statistical mechanics, where the Yang–Baxter equation occurs with a spectral parameter. Combinatorial aspects of the representation theory of quantum affine algebras can be described simply using crystal bases, which correspond to the degenerate case when the deformation parameter ''q'' vanishes and the Hamiltonian of the associated lattice model can be explicitly diagonalized. See also *Quantum enveloping algebra *Quantum KZ equations *Littelmann path model *Yangian In representation theory, a Yangian is an infinite-dimensional Hopf algebra, a type of a quantum group. Yangians f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamiltonian (quantum Mechanics)
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program, the economic policies advocated by Alexander Hamilton, the first United States Secretary of the Treasury See also * Alexander Hamilton (1755 or 1757–1804), American statesman and one of the Founding Fathers of the US * Hamilton (other) Hamilton may refer to: People * Hamilton (name), a common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Groups
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group. The term "quantum group" first appeared in the theory of quantum integrable systems, which was then formalized by Vladimir Drinfeld and Michio Jimbo as a particular class of Hopf algebra. The same term is also used for other Hopf algebras that deform or are close to classical Lie groups or Lie algebras, such as a "bicrossproduct" class of quantum groups introduced by Shahn Majid a little after the work of Drinfeld and Jimbo. In Drinfeld's approach, quantum groups arise as Hopf algebras dependi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Letters In Mathematical Physics
''Letters in Mathematical Physics'' is a peer-reviewed scientific journal in mathematical physics published by Springer Science+Business Media. It publishes letters and longer research articles, occasionally also articles containing topical reviews. It is essentially a platform for the rapid dissemination of short contributions in the field of mathematical physics. In addition, the journal publishes contributions to modern mathematics in fields which have a potential physical application, and developments in theoretical physics which have potential mathematical impact. The editors are Volker Bach, Edward Frenkel, Maxim Kontsevich, Dirk Kreimer, Nikita Nekrasov, Massimo Porrati, and Daniel Sternheimer. Abstracting and indexing The following services abstract or index ''Letters in Mathematical Physics'': Academic OneFile, Academic Search, Astrophysics Data System, Chemical Abstracts Service, Current Contents/Physical, Chemical and Earth Sciences, Current Index to Statistics, EBSC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Communications In Mathematical Physics
''Communications in Mathematical Physics'' is a peer-reviewed academic journal published by Springer. The journal publishes papers in all fields of mathematical physics, but focuses particularly in analysis related to condensed matter physics, statistical mechanics and quantum field theory, and in operator algebras, quantum information and relativity. History Rudolf Haag conceived this journal with Res Jost, and Haag became the Founding Chief Editor. The first issue of ''Communications in Mathematical Physics'' appeared in 1965. Haag guided the journal for the next eight years. Then Klaus Hepp succeeded him for three years, followed by James Glimm, for another three years. Arthur Jaffe began as chief editor in 1979 and served for 21 years. Michael Aizenman became the fifth chief editor in the year 2000 and served in this role until 2012. The current editor-in-chief is Horng-Tzer Yau. Archives Articles from 1965 to 1997 are available in electronic form free of charge, via Pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Yangian
In representation theory, a Yangian is an infinite-dimensional Hopf algebra, a type of a quantum group. Yangians first appeared in physics in the work of Ludvig Faddeev and his school in the late 1970s and early 1980s concerning the quantum inverse scattering method. The name ''Yangian'' was introduced by Vladimir Drinfeld in 1985 in honor of C.N. Yang. Initially, they were considered a convenient tool to generate the solutions of the quantum Yang–Baxter equation. The center of the Yangian can be described by the quantum determinant. Description For any finite-dimensional semisimple Lie algebra ''a'', Drinfeld defined an infinite-dimensional Hopf algebra ''Y''(''a''), called the Yangian of ''a''. This Hopf algebra is a deformation of the universal enveloping algebra ''U''(''a'' 'z'' of the Lie algebra of polynomial loops of ''a'' given by explicit generators and relations. The relations can be encoded by identities involving a rational ''R''-matrix. Replacing it with a trigo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Littelmann Path Model
In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities ''without overcounting'' in the representation theory of symmetrisable Kac–Moody algebras. Its most important application is to complex semisimple Lie algebras or equivalently compact semisimple Lie groups, the case described in this article. Multiplicities in irreducible representations, tensor products and branching rules can be calculated using a coloured directed graph, with labels given by the simple roots of the Lie algebra. Developed as a bridge between the theory of crystal bases arising from the work of Kashiwara and Lusztig on quantum groups and the standard monomial theory of C. S. Seshadri and Lakshmibai, Littelmann's path model associates to each irreducible representation a rational vector space with basis given by paths from the origin to a weight as well as a pair of root operators acting on paths for each simple root. This gives a direct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum KZ Equations
In mathematical physics, the quantum KZ equations or quantum Knizhnik–Zamolodchikov equations or qKZ equations are the analogue for quantum affine algebras of the Knizhnik–Zamolodchikov equations for affine Kac–Moody algebras. They are a consistent system of difference equations satisfied by the ''N''-point functions, the vacuum expectations of products of primary fields. In the limit as the deformation parameter ''q'' approaches 1, the ''N''-point functions of the quantum affine algebra tend to those of the affine Kac–Moody algebra and the difference equations become partial differential equations. The quantum KZ equations have been used to study exactly solved models in quantum statistical mechanics. See also *Quantum affine algebras *Yang–Baxter equation *Quantum group *Affine Hecke algebra *Kac–Moody algebra *Two-dimensional conformal field theory A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Enveloping Algebra
In mathematics, a quantum or quantized enveloping algebra is a ''q''-analog of a universal enveloping algebra. Given a Lie algebra \mathfrak, the quantum enveloping algebra is typically denoted as U_q(\mathfrak). The notation was introduced by Drinfeld and independently by Jimbo. Among the applications, studying the q \to 0 limit led to the discovery of crystal bases. The case of \mathfrak_2 Michio Jimbo considered the algebras with three generators related by the three commutators : ,e= 2e,\ ,f= -2f,\ ,f= \sinh(\eta h)/\sinh \eta. When \eta \to 0, these reduce to the commutators that define the special linear Lie algebra \mathfrak_2. In contrast, for nonzero \eta, the algebra defined by these relations is not a Lie algebra but instead an associative algebra that can be regarded as a deformation of the universal enveloping algebra of \mathfrak_2. See also *quantum group References * * External links Quantized enveloping algebraat the nLab Quantized enveloping alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Crystal Basis
A crystal base for a representation of a quantum group on a \Q(v)-vector space is not a base of that vector space but rather a \Q-base of L/vL where L is a \Q(v)-lattice in that vector spaces. Crystal bases appeared in the work of and also in the work of . They can be viewed as specializations as v \to 0 of the canonical basis defined by . Definition As a consequence of its defining relations, the quantum group U_q(G) can be regarded as a Hopf algebra over the field of all rational functions of an indeterminate ''q'' over \Q, denoted \Q(q). For simple root \alpha_i and non-negative integer n, define :\begin e_i^ = f_i^ &= 1 \\ e_i^ &= \frac \\ ptf_i^ &= \frac \end In an integrable module M, and for weight \lambda, a vector u \in M_ (i.e. a vector u in M with weight \lambda) can be uniquely decomposed into the sums :u = \sum_^\infty f_i^ u_n = \sum_^\infty e_i^ v_n, where u_n \in \ker(e_i) \cap M_, v_n \in \ker(f_i) \cap M_, u_n \ne 0 only if n + \frac \ge 0, and v_n \ne 0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Algebra
Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedish actor *Ludwig Hopf (1884–1939), German physicist *Maria Hopf Maria Hopf (13 September 1913 – 24 August 2008) was a pioneering archaeobotanist, based at the RGZM, Mainz. Career Hopf studied botany from 1941–44, receiving her doctorate in 1947 on the subject of soil microbes. She then worked in phyto ... (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]