Whitney Graph Isomorphism Theorem
   HOME
*



picture info

Whitney Graph Isomorphism Theorem
In the mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edges of . is constructed in the following way: for each edge in , make a vertex in ; for every two edges in that have a vertex in common, make an edge between their corresponding vertices in . The name line graph comes from a paper by although both and used the construction before this. Other terms used for the line graph include the covering graph, the derivative, the edge-to-vertex dual, the conjugate, the representative graph, and the θ-obrazom, as well as the edge graph, the interchange graph, the adjoint graph, and the derived graph., p. 71. proved that with one exceptional case the structure of a connected graph can be recovered completely from its line graph. Many other properties of line graphs follow by translating the properties of the underlying graph from vertices into edges, and by Whitney's theorem the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Articulation Point
Articulation may refer to: Linguistics * Articulatory phonetics, the study of how humans produce speech sounds via the interaction of physiological structures ** Manner of articulation, how speech organs involved in making a sound make contact ** Place of articulation, positions of speech organs to create distinctive speech sounds * Articulatory gestures, the actions necessary to enunciate language * Articulatory phonology, a theory that attempts to unify phonetics and phonology * Articulatory speech recognition, the recovery of speech from acoustic signals * Articulatory synthesis, computational techniques for synthesizing speech based on models of human articulation processes * Topic–focus articulation, a field of study concerned with marking old and new information in a clause Engineering * Articulated vehicle, which have a pivoted joint allowing them to turn more sharply * Articulation score, in telecommunications, a subjective measure of the intelligibility of a voice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Cycle
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: :Given the graph in the image, is it possible to construct a path (or a cycle; i.e., a path starting and ending on the same vertex) that visits each edge exactly once? Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph have an even degree, and stated without proof that connected graphs with all vertices of even degree have an Eulerian circuit. The first complete proof of this latter claim was published posthumously in 1873 by Carl Hierholzer. This is known as Euler's Theorem: :A connected gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cayley Graph
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs. Definition Let G be a group and S be a generating set of G. The Cayley graph \Gamma = \Gamma(G,S) is an edge-colored directed graph constructed as follows: In his Collected Mathematical Papers 10: 403–405. * Each element g of G is assigned a vertex: the vertex set of \Gamma is identified with G. * Each element s of S is assigned a color c_s. * For every g \in G and s \in S, there is a directed edge of color c_s from the vertex corresponding to g to the one corresponding to gs. Not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Petersen Graph
In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by . Kempe observed that its vertices can represent the ten lines of the Desargues configuration, and its edges represent pairs of lines that do not meet at one of the ten points of the configuration. Donald Knuth states that the Petersen graph is "a remarkable configuration that serves as a counterexample to many optimistic predictions about what might be true for graphs in general." The Petersen graph also makes an appearance in tropical geometry. The cone over the Petersen graph is naturally identif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex-transitive Graph
In the mathematical field of graph theory, a vertex-transitive graph is a graph in which, given any two vertices and of , there is some automorphism :f : G \to G\ such that :f(v_1) = v_2.\ In other words, a graph is vertex-transitive if its automorphism group acts transitively on its vertices.. A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical. Every symmetric graph without isolated vertices is vertex-transitive, and every vertex-transitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's graph). Finite examples Finite vertex-transitive graphs include the symmetric graphs (such as the Petersen graph, the Heawood graph and the vertices and edges of the Platonic solids). The finite Cayley graphs (such as cube-connected cycles) are also ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edge-transitive Graph
In the mathematical field of graph theory, an edge-transitive graph is a graph such that, given any two edges and of , there is an automorphism of that maps to . In other words, a graph is edge-transitive if its automorphism group acts transitively on its edges. Examples and properties The number of connected simple edge-transitive graphs on n vertices is 1, 1, 2, 3, 4, 6, 5, 8, 9, 13, 7, 19, 10, 16, 25, 26, 12, 28 ... Edge-transitive graphs include all symmetric graph, such as the vertices and edges of the cube. Symmetric graphs are also vertex-transitive (if they are connected), but in general edge-transitive graphs need not be vertex-transitive. Every connected edge-transitive graph that is not vertex-transitive must be bipartite, (and hence can be colored with only two colors), and either semi-symmetric or biregular.. Examples of edge but not vertex transitive graphs include the complete bipartite graphs K_ where m ≠ n, which includes the star graphs K_. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Chromatic Number
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a Graph (discrete mathematics), graph subject to certain constraints. In its simplest form, it is a way of coloring the Vertex (graph theory), vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual graph, dual. However, non-vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Edge Chromatic Number
Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by Microsoft * EdgeHTML, the layout engine previously used in Microsoft Edge * ThinkPad Edge, a Lenovo laptop computer series marketed from 2010 * Silhouette edge, in computer graphics, a feature of a 3D body projected onto a 2D plane * Explicit data graph execution, a computer instruction set architecture Telecommunication(s) * Edge Wireless, an American mobile phone provider * Enhanced Data rates for GSM Evolution, a pre-3G digital mobile phone technology * Motorola Edge, a series of smartphones made by Motorola * Samsung Galaxy Note Edge, a phablet made by Samsung * Samsung Galaxy S7 Edge or Samsung Galaxy S6 Edge, smartphones made by Samsung * Ubuntu Edge, a prototype smartphone made by Canonical Entertainment Music * ''Edge'' (Dar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rainbow Matching
In the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Definition Given an edge-colored graph , a rainbow matching in is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex, such that all the edges in the set have distinct colors. A maximum rainbow matching is a rainbow matching that contains the largest possible number of edges. History Rainbow matchings are of particular interest given their connection to transversals of Latin squares. Denote by the complete bipartite graph on vertices. Every proper -edge coloring of corresponds to a Latin square of order . A rainbow matching then corresponds to a transversal of the Latin square, meaning a selection of positions, one in each row and each column, containing distinct entries. This connection between transversals of Latin squares and rainbow matchings in has inspired additional interest in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rainbow-independent Set
In graph theory, a rainbow-independent set (ISR) is an independent set in a graph, in which each vertex has a different color. Formally, let be a graph, and suppose vertex set is partitioned into subsets , called "colors". A set of vertices is called a rainbow-independent set if it satisfies both the following conditions: * It is an independent set – every two vertices in are not adjacent (there is no edge between them); * It is a rainbow set – contains at most a single vertex from each color . Other terms used in the literature are independent set of representatives, independent transversal, and independent system of representatives. As an example application, consider a faculty with departments, where some faculty members dislike each other. The dean wants to construct a committee with members, one member per department, but without any pair of members who dislike each other. This problem can be presented as finding an ISR in a graph in which the nodes are the fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Maximum Matching
Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph , and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible. An important special case of the maximum cardinality matching problem is when is a bipartite graph, whose vertices are partitioned between left vertices in and right vertices in , and edges in always connect a left vertex to a right vertex. In this case, the problem can be efficiently solved with simpler algorithms than in the general case. Algorithms for bipartite graphs Flow-based algorithm The simplest way to compute a maximum cardinality matching is to follow the Ford–Fulkerson algorithm. This algorithm solves the more general problem o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]