HOME
*





Wilf Equivalence
In the study of permutations and permutation patterns, Wilf equivalence is an equivalence relation on permutation classes. Two permutation classes are Wilf equivalent when they have the same numbers of permutations of each possible length, or equivalently if they have the same generating functions. The equivalence classes for Wilf equivalence are called Wilf classes; they are the combinatorial class In mathematics, a combinatorial class is a countable set of mathematical objects, together with a size function mapping each object to a non-negative integer, such that there are finitely many objects of each size. Counting sequences and isomorphis ...es of permutation classes. The counting functions and Wilf equivalences among many specific permutation classes are known. Wilf equivalence may also be described for individual permutations rather than permutation classes. In this context, two permutations are said to be Wilf equivalent if the principal permutation classes formed by forbid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of scie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Pattern
In combinatorial mathematics and theoretical computer science, a permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of digits representing the result of applying the permutation to the digit sequence 123...; for instance the digit sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to ''contain'' σ as a ''pattern'' if some subsequence of the digits of π has the same relative order as all of the digits of σ. For instance, permutation π contains the pattern 213 whenever π has three digits ''x'', ''y'', and ''z'' that appear within π in the order ''x''...''y''...''z'' but whose values are ordered as ''y'' < ''x'' < ''z'', the same as the ordering of the values in the permutation 213. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Class
In the study of permutations and permutation patterns, a permutation class is a set C of permutations for which every pattern within a permutation in C is also in C. In other words, a permutation class is a hereditary property of permutations, or a downset in the permutation pattern order. A permutation class may also be known as a pattern class, closed class, or simply class of permutations. Every permutation class can be defined by the minimal permutations which do not lie inside it, its ''basis''., Definition 8.1.3, p. 318. A principal permutation class is a class whose basis consists of only a single permutation. Thus, for instance, the stack-sortable permutations form a principal permutation class, defined by the forbidden pattern 231. However, some other permutation classes have bases with more than one pattern or even with infinitely many patterns. A permutation class that does not include all permutations is called proper. In the late 1980s, Richard Stanley and Herbert Wil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generating Function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the ''formal'' power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence in principle has a generating function of each type (except ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Combinatorial Class
In mathematics, a combinatorial class is a countable set of mathematical objects, together with a size function mapping each object to a non-negative integer, such that there are finitely many objects of each size. Counting sequences and isomorphism The ''counting sequence'' of a combinatorial class is the sequence of the numbers of elements of size ''i'' for ''i'' = 0, 1, 2, ...; it may also be described as a generating function that has these numbers as its coefficients. The counting sequences of combinatorial classes are the main subject of study of enumerative combinatorics. Two combinatorial classes are said to be isomorphic if they have the same numbers of objects of each size, or equivalently, if their counting sequences are the same.. Frequently, once two combinatorial classes are known to be isomorphic, a bijective proof of this equivalence is sought; such a proof may be interpreted as showing that the objects in the two isomorphic classes are cryptomorphic to eac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enumerations Of Specific Permutation Classes
In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those with relatively few basis elements. This area of study has turned up unexpected instances of Wilf equivalence, where two seemingly-unrelated permutation classes have the same numbers of permutations of each length. Classes avoiding one pattern of length 3 There are two symmetry classes and a single Wilf class for single permutations of length three. Classes avoiding one pattern of length 4 There are seven symmetry classes and three Wilf classes for single permutations of length four. No non-recursive formula counting 1324-avoiding permutations is known. A recursive formula was given by . A more efficient algorithm using functional equations was given by , which was enhanced by , and then further enhanced by who give the first 50 terms of the enumeration. have provided lower and upper bounds for the growth of this class. Classes avo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enumerative Combinatorics
Enumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets ''S''''i'' indexed by the natural numbers, enumerative combinatorics seeks to describe a ''counting function'' which counts the number of objects in ''S''''n'' for each ''n''. Although counting the number of elements in a set is a rather broad mathematical problem, many of the problems that arise in applications have a relatively simple combinatorial description. The twelvefold way provides a unified framework for counting permutations, combinations and partitions. The simplest such functions are ''closed formulas'', which can be expressed as a composition of elementary functions such as factorials, powers, and so on. For instance, as shown below, the number of different possible orderings of a deck of '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Patterns
In combinatorial mathematics and theoretical computer science, a permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of digits representing the result of applying the permutation to the digit sequence 123...; for instance the digit sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to ''contain'' σ as a ''pattern'' if some subsequence of the digits of π has the same relative order as all of the digits of σ. For instance, permutation π contains the pattern 213 whenever π has three digits ''x'', ''y'', and ''z'' that appear within π in the order ''x''...''y''...''z'' but whose values are ordered as ''y'' < ''x'' < ''z'', the same as the ordering of the values in the permutation 213. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]