HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a combinatorial class is a
countable set In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
of mathematical objects, together with a size function mapping each object to a non-negative integer, such that there are finitely many objects of each size.


Counting sequences and isomorphism

The ''counting sequence'' of a combinatorial class is the sequence of the numbers of elements of size ''i'' for ''i'' = 0, 1, 2, ...; it may also be described as a
generating function In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary seri ...
that has these numbers as its coefficients. The counting sequences of combinatorial classes are the main subject of study of
enumerative combinatorics Enumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infin ...
. Two combinatorial classes are said to be isomorphic if they have the same numbers of objects of each size, or equivalently, if their counting sequences are the same.. Frequently, once two combinatorial classes are known to be isomorphic, a
bijective proof In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other ...
of this equivalence is sought; such a proof may be interpreted as showing that the objects in the two isomorphic classes are cryptomorphic to each other. For instance, the
triangulation In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points. Applications In surveying Specifically in surveying, triangulation involves only angle me ...
s of
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either convex p ...
s (with size given by the number of sides of the polygon, and a fixed choice of polygon to triangulate for each size) and the set of unrooted binary
plane tree ''Platanus'' is a genus consisting of a small number of tree species native to the Northern Hemisphere. They are the sole living members of the family Platanaceae. All mature members of ''Platanus'' are tall, reaching in height. All except f ...
s (up to
graph isomorphism In graph theory, an isomorphism of graphs ''G'' and ''H'' is a bijection between the vertex sets of ''G'' and ''H'' : f \colon V(G) \to V(H) such that any two vertices ''u'' and ''v'' of ''G'' are adjacent in ''G'' if and only if f(u) and f(v) a ...
, with a fixed ordering of the leaves, and with size given by the number of leaves) are both counted by the
Catalan number In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Cata ...
s, so they form isomorphic combinatorial classes. A bijective isomorphism in this case is given by planar graph duality: a triangulation can be transformed bijectively into a tree with a leaf for each polygon edge, an internal node for each triangle, and an edge for each two (polygon edges?) or triangles that are adjacent to each other.


Analytic combinatorics

The theory of
combinatorial species In combinatorial mathematics, the theory of combinatorial species is an abstract, systematic method for deriving the generating functions of discrete structures, which allows one to not merely count these structures but give bijective proofs invol ...
and its extension to
analytic combinatorics In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and ...
provide a language for describing many important combinatorial classes, constructing new classes from combinations of previously defined ones, and automatically deriving their counting sequences. For example, two combinatorial classes may be combined by
disjoint union In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A (th ...
, or by a
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
construction in which the objects are ordered pairs of one object from each of two classes, and the size function is the sum of the sizes of each object in the pair. These operations respectively form the addition and multiplication operations of a
semiring In abstract algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse. The term rig is also used occasionally—this originated as a joke, suggesting that rigs ar ...
on the family of (isomorphism equivalence classes of) combinatorial classes, in which the zero object is the empty combinatorial class, and the unit is the class whose only object is the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
.


Permutation patterns

In the study of
permutation pattern In combinatorial mathematics and theoretical computer science, a permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of digits representing the result of applying the pe ...
s, a combinatorial class of
permutation class In the study of permutations and permutation patterns, a permutation class is a set C of permutations for which every pattern within a permutation in C is also in C. In other words, a permutation class is a hereditary property of permutations, or a ...
es, enumerated by permutation length, is called a
Wilf class In the study of permutations and permutation patterns, Wilf equivalence is an equivalence relation on permutation classes. Two permutation classes are Wilf equivalent when they have the same numbers of permutations of each possible length, or equiv ...
. The study of
enumerations of specific permutation classes In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those with relatively few basis elements. This area of study has turned up unexpected instances of Wilf equivalence, ...
has turned up unexpected equivalences in counting sequences of seemingly unrelated permutation classes.


References

{{DEFAULTSORT:Combinatorial Class Combinatorics