Weakly O-minimal Structure
In model theory, a weakly o-minimal structure is a model-theoretic structure whose definable sets in the domain are just finite unions of convex sets. Definition A linearly ordered structure, ''M'', with language ''L'' including an ordering relation <, is called weakly o-minimal if every parametrically definable subset of ''M'' is a finite union of convex (definable) subsets. A is weakly o-minimal if all its models are weakly o-minimal. Note that, in contrast to , it is possible for a theory to have models that are weakly o-minimal and to have other models that are not weakly o-minimal. Difference from o-minimality In an o-minimal structure the definable sets in[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structure (mathematical Logic)
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces. The term universal algebra is used for structures with no relation symbols. Model theory has a different scope that encompasses more arbitrary theories, including foundational structures such as models of set theory. From the model-theoretic point of view, structures are the objects used to define the semantics of first-order logic. For a given theory in model theory, a structure is called a model if it satisfies the defining axioms of that theory, although it is sometimes disambiguated as a ''semantic model'' when one discusses the notion in the more general setting of mathematical models. Logicians sometimes refer to structures as " interpretations", whereas the term "interpretation" generally has ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Definable Set
In mathematical logic, a definable set is an ''n''-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation. Definition Let \mathcal be a first-order language, \mathcal an \mathcal-structure with domain M, X a fixed subset of M, and m a natural number. Then: * A set A\subseteq M^m is ''definable in \mathcal with parameters from X'' if and only if there exists a formula \varphi _1,\ldots,x_m,y_1,\ldots,y_n/math> and elements b_1,\ldots,b_n\in X such that for all a_1,\ldots,a_m\in M, :(a_1,\ldots,a_m)\in A if and only if \mathcal\models\varphi _1,\ldots,a_m,b_1,\ldots,b_n/math> :The bracket notation here indicates the semantic evaluation of the free variables in the formula. * A set ''A is definable in \mathcal without parameters'' if it is definable in \mathcal with paramet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Set
In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex se ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Total Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partial ord ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theory (logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins by specifying a definite non-empty ''conceptual class'' \mathcal, the element ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
O-minimality
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) which is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊂ ''M'' (with parameters taken from ''M'') is a finite of intervals and points. O-minimality can be regarded as a weak form of . A structure ''M'' is o-minimal if and only if every formula with one free variable and parameters in ''M'' is equivalent to a quantifier-free formula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the polynomial . That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number 1 + i is algebraic because it is a root of . All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as and , are called transcendental numbers. The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental. Examples * All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer and a (non-zero) natural number , satisfies the above definition, because is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unary Relation
In mathematics, a finitary relation over sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples consisting of elements ''x''''i'' in ''X''''i''. Typically, the relation describes a possible connection between the elements of an ''n''-tuple. For example, the relation "''x'' is divisible by ''y'' and ''z''" consists of the set of 3-tuples such that when substituted to ''x'', ''y'' and ''z'', respectively, make the sentence true. The non-negative integer ''n'' giving the number of "places" in the relation is called the ''arity'', ''adicity'' or ''degree'' of the relation. A relation with ''n'' "places" is variously called an ''n''-ary relation, an ''n''-adic relation or a relation of degree ''n''. Relations with a finite number of places are called ''finitary relations'' (or simply ''relations'' if the context is clear). It is also possible to generalize the concept to ''infinitary relations'' with infinite sequences. An ''n''-ary relation over sets is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Structures
In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance. A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and categories. Sometimes, a set is endowed with more than one feature simultaneously, which allows mathematicians to study the interaction between the different structures more richly. For example, an ordering imposes a rigid form, shape, or topology on the set, and if a set has both a topology feature and a group feature, such that these two features are related in a certain way, then the structure becomes a topological group. Mappings between sets which preserve structures (i.e., structures in the domain a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |