HOME
*





O-minimality
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) which is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊂ ''M'' (with parameters taken from ''M'') is a finite of intervals and points. O-minimality can be regarded as a weak form of . A structure ''M'' is o-minimal if and only if every formula with one free variable and parameters in ''M'' is equivalent to a quantifier-free formula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weakly O-minimal Structure
In model theory, a weakly o-minimal structure is a model-theoretic structure whose definable sets in the domain are just finite unions of convex sets. Definition A linearly ordered structure, ''M'', with language ''L'' including an ordering relation <, is called weakly o-minimal if every parametrically definable subset of ''M'' is a finite union of convex (definable) subsets. A is weakly o-minimal if all its models are weakly o-minimal. Note that, in contrast to , it is possible for a theory to have models that are weakly o-minimal and to have other models that are not weakly o-minimal.


Difference from o-minimality

In an o-minimal structure (M,<,...) the definable sets in M
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




C-minimal Theory
In model theory, a branch of mathematical logic, a C-minimal theory is a theory that is "minimal" with respect to a ternary relation ''C'' with certain properties. Algebraically closed fields with a (Krull) valuation are perhaps the most important example. This notion was defined in analogy to the o-minimal theories, which are "minimal" (in the same sense) with respect to a linear order. Definition A ''C''-relation is a ternary relation ''C''(''x'';''y,z'') that satisfies the following axioms. # \forall xyz\, C(x;y,z)\rightarrow C(x;z,y) # \forall xyz\, C(x;y,z)\rightarrow\neg C(y;x,z) # \forall xyzw\, C(x;y,z)\rightarrow (C(w;y,z)\vee C(x;w,z)) # \forall xy\, x\neq y \rightarrow \exists z\neq y\, C(x;y,z) A C-minimal structure is a structure ''M'', in a signature containing the symbol ''C'', such that ''C'' satisfies the above axioms and every set of elements of ''M'' that is definable with parameters in ''M'' is a Boolean combination of instances of ''C'', i.e. of formu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Definable Set
In mathematical logic, a definable set is an ''n''-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation. Definition Let \mathcal be a first-order language, \mathcal an \mathcal-structure with domain M, X a fixed subset of M, and m a natural number. Then: * A set A\subseteq M^m is ''definable in \mathcal with parameters from X'' if and only if there exists a formula \varphi _1,\ldots,x_m,y_1,\ldots,y_n/math> and elements b_1,\ldots,b_n\in X such that for all a_1,\ldots,a_m\in M, :(a_1,\ldots,a_m)\in A if and only if \mathcal\models\varphi _1,\ldots,a_m,b_1,\ldots,b_n/math> :The bracket notation here indicates the semantic evaluation of the free variables in the formula. * A set ''A is definable in \mathcal without parameters'' if it is definable in \mathcal with paramet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pfaffian Function
In mathematics, Pfaffian functions are a certain class of functions whose derivative can be written in terms of the original function. They were originally introduced by Askold Khovanskii in the 1970s, but are named after German mathematician Johann Pfaff. Basic definition Some functions, when differentiated, give a result which can be written in terms of the original function. Perhaps the simplest example is the exponential function, ''f''(''x'') = ''e''''x''. If we differentiate this function we get ''ex'' again, that is :f^\prime(x) = f(x). Another example of a function like this is the reciprocal function, ''g''(''x'') = 1/''x''. If we differentiate this function we will see that :g^\prime(x) = -g(x)^2. Other functions may not have the above property, but their derivative may be written in terms of functions like those above. For example, if we take the function ''h''(''x'') = ''e''''x'' log(''x'') then we see :h^\prime(x) = e^x\log x+x^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semialgebraic Set
In mathematics, a semialgebraic set is a subset ''S'' of ''Rn'' for some real closed field ''R'' (for example ''R'' could be the field of real numbers) defined by a finite sequence of polynomial equations (of the form P(x_1,...,x_n) = 0) and inequalities (of the form Q(x_1,...,x_n) > 0), or any finite union of such sets. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers. Properties Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seidenberg theorem says that they are also closed under the projection operation: in other words a semialgebraic set projected onto a linear subspace yields another such (as case o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Real Algebraic Geometry
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.e., mappings whose graphs are semialgebraic sets. Terminology Nowadays the words 'semialgebraic geometry' and 'real algebraic geometry' are used as synonyms, because real algebraic sets cannot be studied seriously without the use of semialgebraic sets. For example, a projection of a real algebraic set along a coordinate axis need not be a real algebraic set, but it is always a semialgebraic set: this is the Tarski–Seidenberg theorem. Related fields are o-minimal theory and r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hassler Whitney
Hassler Whitney (March 23, 1907 – May 10, 1989) was an American mathematician. He was one of the founders of singularity theory, and did foundational work in manifolds, embeddings, immersions, characteristic classes, and geometric integration theory. Biography Life Hassler Whitney was born on March 23, 1907, in New York City, where his father Edward Baldwin Whitney was the First District New York Supreme Court judge. His mother, A. Josepha Newcomb Whitney, was an artist and active in politics. He was the paternal nephew of Connecticut Governor and Chief Justice Simeon Eben Baldwin, his paternal grandfather was William Dwight Whitney, professor of Ancient Languages at Yale University, linguist and Sanskrit scholar. Whitney was the great-grandson of Connecticut Governor and US Senator Roger Sherman Baldwin, and the great-great-grandson of American founding father Roger Sherman. His maternal grandparents were astronomer and mathematician Simon Newcomb (1835-1909), a Steeves desce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Louis Verdier
Jean-Louis Verdier (; 2 February 1935 – 25 August 1989) was a French mathematician who worked, under the guidance of his doctoral advisor Alexander Grothendieck, on derived categories and Verdier duality. He was a close collaborator of Grothendieck, notably contributing to SGA 4 his theory of hypercovers and anticipating the later development of étale homotopy by Michael Artin and Barry Mazur, following a suggestion he attributed to Pierre Cartier. Saul Lubkin's related theory of rigid hypercovers was later taken up by Eric Friedlander in his definition of the étale topological type. Verdier was a student at the elite École Normale Supérieure in Paris, and later became director of studies there, as well as a Professor at the University of Paris VII. For many years he directed a joint seminar at the École Normale Supérieure with Adrien Douady. Verdier was a member of Bourbaki. In 1984 he was the president of the Société Mathématique de France. In 1976 Verdier d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stratification (mathematics)
Stratification has several usages in mathematics. In mathematical logic In mathematical logic, stratification is any consistent assignment of numbers to Predicate (logic), predicate symbols guaranteeing that a unique formal Interpretation (logic), interpretation of a logical theory exists. Specifically, we say that a set of Clause (logic), clauses of the form Q_1 \wedge \dots \wedge Q_n \wedge \neg Q_ \wedge \dots \wedge \neg Q_ \rightarrow P is stratified if and only if there is a stratification assignment S that fulfills the following conditions: # If a predicate P is positively derived from a predicate Q (i.e., P is the head of a rule, and Q occurs positively in the body of the same rule), then the stratification number of P must be greater than or equal to the stratification number of Q, in short S(P) \geq S(Q). # If a predicate P is derived from a negated predicate Q (i.e., P is the head of a rule, and Q occurs negatively in the body of the same rule), then the stratification ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]