Vladimir Drinfeld
   HOME
*





Vladimir Drinfeld
Vladimir Gershonovich Drinfeld ( uk, Володи́мир Ге́ршонович Дрінфельд; russian: Влади́мир Ге́ршонович Дри́нфельд; born February 14, 1954), surname also romanized as Drinfel'd, is a renowned mathematician from the former USSR, who emigrated to the United States and is currently working at the University of Chicago. Drinfeld's work connected algebraic geometry over finite fields with number theory, especially the theory of automorphic forms, through the notions of elliptic module and the theory of the geometric Langlands correspondence. Drinfeld introduced the notion of a quantum group (independently discovered by Michio Jimbo at the same time) and made important contributions to mathematical physics, including the ADHM construction of instantons, algebraic formalism of the quantum inverse scattering method, and the Drinfeld–Sokolov reduction in the theory of solitons. He was awarded the Fields Medal in 1990. In 2016, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kharkov
Kharkiv ( uk, Ха́рків, ), also known as Kharkov (russian: Харькoв, ), is the second-largest city and municipality in Ukraine.Kharkiv "never had eastern-western conflicts"
'''' (23 October 2014)
Located in the northeast of the country, it is the largest city of the historic region. Kharkiv is the of

picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

National Academy Of Sciences
The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the National Academy of Medicine (NAM). As a national academy, new members of the organization are elected annually by current members, based on their distinguished and continuing achievements in original research. Election to the National Academy is one of the highest honors in the scientific field. Members of the National Academy of Sciences serve '' pro bono'' as "advisers to the nation" on science, engineering, and medicine. The group holds a congressional charter under Title 36 of the United States Code. Founded in 1863 as a result of an Act of Congress that was approved by Abraham Lincoln, the NAS is charged with "providing independent, objective advice to the nation on matters related to science and technology. ... to provide scien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soliton
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. The soliton phenomenon was first described in 1834 by John Scott Russell (1808–1882) who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation". Definition A single, consensus definition of a soliton is difficult to find. ascribe three properties to solitons: # They are of permanent form; # They are localized within a region; # They can interact with other solitons, and emerge from the collision unchanged, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Inverse Scattering Method
In quantum physics, the quantum inverse scattering method is a method for solving integrable models in 1+1 dimensions, introduced by L. D. Faddeev in 1979. The quantum inverse scattering method relates two different approaches: #the Bethe ansatz, a method of solving integrable quantum models in one space and one time dimension; #the Inverse scattering transform, a method of solving classical integrable differential equations of the evolutionary type. This method led to the formulation of quantum groups. Especially interesting is the Yangian, and the center of the Yangian is given by the quantum determinant. An important concept in the Inverse scattering transform is the Lax representation; the quantum inverse scattering method starts by the quantization of the Lax representation and reproduces the results of the Bethe ansatz. In fact, it allows the Bethe ansatz to be written in a new form: the ''algebraic Bethe ansatz''.cf. e.g. the lectures by N.A. Slavnov, This led to fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instanton
An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime. In such quantum theories, solutions to the equations of motion may be thought of as critical points of the action. The critical points of the action may be local maxima of the action, local minima, or saddle points. Instantons are important in quantum field theory because: * they appear in the path integral as the leading quantum corrections to the classical behavior of a system, and * they can be used to study the tunneling behavior in various systems such as a Yang–Mills theory. Relevant to dynamics, families of instantons permit that instantons, i.e. different critical points of the equation of motion, be related to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ADHM Construction
In mathematical physics and gauge theory, the ADHM construction or monad construction is the construction of all instantons using methods of linear algebra by Michael Atiyah, Vladimir Drinfeld, Nigel Hitchin, Yuri I. Manin in their paper "Construction of Instantons." ADHM data The ADHM construction uses the following data: * complex vector spaces ''V'' and ''W'' of dimension ''k'' and ''N'', * ''k'' × ''k'' complex matrices ''B''1, ''B''2, a ''k'' × ''N'' complex matrix ''I'' and a ''N'' × ''k'' complex matrix ''J'', * a real moment map \mu_r = _1,B_1^\dagger _2,B_2^\daggerII^\dagger-J^\dagger J, * a complex moment map \displaystyle\mu_c = _1,B_2IJ. Then the ADHM construction claims that, given certain regularity conditions, * Given ''B''1, ''B''2, ''I'', ''J'' such that \mu_r=\mu_c=0, an anti-self-dual instanton in a SU(''N'') gauge theory with instanton number ''k'' can be constructed, * All anti-self-dual instantons c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michio Jimbo
is a Japanese mathematician working in mathematical physics and is a professor of mathematics at Rikkyo University. He is a grandson of the linguist . Career After graduating from the University of Tokyo in 1974, he studied under Mikio Sato at the Research Institute for Mathematical Sciences in Kyoto University. He has made important contributions to mathematical physics, including (independently of Vladimir Drinfeld) the initial development of the study of quantum groups, the development of the theory of \tau-functions for the KP ( Kadomtsev–Petviashvili) integrable hierarchy, and other related integrable hierarchies , E. Date, M. Jimbo, M. Kashiwara and T. Miwa, "Operator approach to the Kadomtsev-Petviashvili equation III". ''J. Phys. Soc. Jap.'' 50 (11): 3806–3812 (1981). doi:10.1143/JPSJ.50.3806. M. Jimbo and T. Miwa, "Solitons and infinite-dimensional Lie algebras", ''Publ. Res. Inst. Math. Sci.'', 19(3):943–1001 (1983). and development of the theory of isomonodromi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Group
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group. The term "quantum group" first appeared in the theory of quantum integrable systems, which was then formalized by Vladimir Drinfeld and Michio Jimbo as a particular class of Hopf algebra. The same term is also used for other Hopf algebras that deform or are close to classical Lie groups or Lie algebras, such as a "bicrossproduct" class of quantum groups introduced by Shahn Majid a little after the work of Drinfeld and Jimbo. In Drinfeld's approach, quantum groups arise as Hopf algebras depe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Geometric Langlands Correspondence
In mathematics, the geometric Langlands correspondence is a reformulation of the Langlands correspondence obtained by replacing the number fields appearing in the original number theoretic version by function fields and applying techniques from algebraic geometry. The geometric Langlands correspondence relates algebraic geometry and representation theory. History In mathematics, the classical Langlands correspondence is a collection of results and conjectures relating number theory and representation theory. Formulated by Robert Langlands in the late 1960s, the Langlands correspondence is related to important conjectures in number theory such as the Taniyama–Shimura conjecture, which includes Fermat's Last Theorem as a special case.Frenkel 2007, p. 3 Establishing the Langlands correspondence in the number theoretic context has proven extremely difficult. As a result, some mathematicians have posed the geometric Langlands correspondence. Connection to physics In a paper from 200 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Module
In mathematics, a Drinfeld module (or elliptic module) is roughly a special kind of module over a ring of functions on a curve over a finite field, generalizing the Carlitz module. Loosely speaking, they provide a function field analogue of complex multiplication theory. A shtuka (also called F-sheaf or chtouca) is a sort of generalization of a Drinfeld module, consisting roughly of a vector bundle over a curve, together with some extra structure identifying a "Frobenius twist" of the bundle with a "modification" of it. Drinfeld modules were introduced by , who used them to prove the Langlands conjectures for GL2 of an algebraic function field in some special cases. He later invented shtukas and used shtukas of rank 2 to prove the remaining cases of the Langlands conjectures for GL2. Laurent Lafforgue proved the Langlands conjectures for GL''n'' of a function field by studying the moduli stack of shtukas of rank ''n''. "Shtuka" is a Russian word штука meaning "a single cop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]