Vulcanisaeta
   HOME
*





Vulcanisaeta
In alpha taxonomy, taxonomy, ''Vulcanisaeta'' is a genus (biology), genus of the Thermoproteaceae. Description and significance ''Vulcanisaeta'' is an anaerobic, heterotrophic, hyperthermophilic archaeon that grows optimally at 85–90 °C and at pH 4.0–4.5. The organism is isolated from samples collected directly from solfataric fields or piped hot spring water in eastern Japan. Genome structure Several ''Vulcanisaeta'' genomes have been sequenced, see List of sequenced archaeal genomes. The G + C content of its DNA, which is between 44 and 46%, is predicted to be relatively lower than other members of the Thermoproteaceae genera. Cell structure and metabolism The cells of ''Vulcanisaeta'' are straight to slightly curved rods, which range from 0.4 to 0.6 µm in width. In some cases, the cells are branched or bear spherical bodies at the terminals. The archaeon utilizes maltose, starch, malate, yeast extract, peptone, beef extract, casamino acids and gelatin as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vulcanisaeta Distributa
In alpha taxonomy, taxonomy, ''Vulcanisaeta'' is a genus (biology), genus of the Thermoproteaceae. Description and significance ''Vulcanisaeta'' is an anaerobic, heterotrophic, hyperthermophilic archaeon that grows optimally at 85–90 °C and at pH 4.0–4.5. The organism is isolated from samples collected directly from solfataric fields or piped hot spring water in eastern Japan. Genome structure Several ''Vulcanisaeta'' genomes have been sequenced, see List of sequenced archaeal genomes. The G + C content of its DNA, which is between 44 and 46%, is predicted to be relatively lower than other members of the Thermoproteaceae genera. Cell structure and metabolism The cells of ''Vulcanisaeta'' are straight to slightly curved rods, which range from 0.4 to 0.6 µm in width. In some cases, the cells are branched or bear spherical bodies at the terminals. The archaeon utilizes maltose, starch, malate, yeast extract, peptone, beef extract, casamino acids and gelatin as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vulcanisaeta Thermophila
In taxonomy, ''Vulcanisaeta'' is a genus of the Thermoproteaceae. Description and significance ''Vulcanisaeta'' is an anaerobic, heterotrophic, hyperthermophilic archaeon that grows optimally at 85–90 °C and at pH 4.0–4.5. The organism is isolated from samples collected directly from solfataric fields or piped hot spring water in eastern Japan. Genome structure Several ''Vulcanisaeta'' genomes have been sequenced, see List of sequenced archaeal genomes. The G + C content of its DNA, which is between 44 and 46%, is predicted to be relatively lower than other members of the Thermoproteaceae genera. Cell structure and metabolism The cells of ''Vulcanisaeta'' are straight to slightly curved rods, which range from 0.4 to 0.6 µm in width. In some cases, the cells are branched or bear spherical bodies at the terminals. The archaeon utilizes maltose, starch, malate, yeast extract, peptone, beef extract, casamino acids and gelatin as carbon sources, cannot utilize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vulcanisaeta Moutnovskia
In taxonomy, ''Vulcanisaeta'' is a genus of the Thermoproteaceae. Description and significance ''Vulcanisaeta'' is an anaerobic, heterotrophic, hyperthermophilic archaeon that grows optimally at 85–90 °C and at pH 4.0–4.5. The organism is isolated from samples collected directly from solfataric fields or piped hot spring water in eastern Japan. Genome structure Several ''Vulcanisaeta'' genomes have been sequenced, see List of sequenced archaeal genomes. The G + C content of its DNA, which is between 44 and 46%, is predicted to be relatively lower than other members of the Thermoproteaceae genera. Cell structure and metabolism The cells of ''Vulcanisaeta'' are straight to slightly curved rods, which range from 0.4 to 0.6 µm in width. In some cases, the cells are branched or bear spherical bodies at the terminals. The archaeon utilizes maltose, starch, malate, yeast extract, peptone, beef extract, casamino acids and gelatin as carbon sources, cannot utilize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vulcanisaeta Souniana
In taxonomy, ''Vulcanisaeta'' is a genus of the Thermoproteaceae. Description and significance ''Vulcanisaeta'' is an anaerobic, heterotrophic, hyperthermophilic archaeon that grows optimally at 85–90 °C and at pH 4.0–4.5. The organism is isolated from samples collected directly from solfataric fields or piped hot spring water in eastern Japan. Genome structure Several ''Vulcanisaeta'' genomes have been sequenced, see List of sequenced archaeal genomes. The G + C content of its DNA, which is between 44 and 46%, is predicted to be relatively lower than other members of the Thermoproteaceae genera. Cell structure and metabolism The cells of ''Vulcanisaeta'' are straight to slightly curved rods, which range from 0.4 to 0.6 µm in width. In some cases, the cells are branched or bear spherical bodies at the terminals. The archaeon utilizes maltose, starch, malate, yeast extract, peptone, beef extract, casamino acids and gelatin as carbon sources, cannot utilize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Sequenced Archaeal Genomes
This list of sequenced archaeal genomes contains all the archaea known to have publicly available complete genome sequences that have been assembled, annotated and deposited in public databases. ''Methanococcus jannaschii'' was the first archaeon whose genome was sequenced, in 1996. Currently in this list there are 39 genomes belonging to Crenarchaeota species, 105 belonging to the Euryarchaeota, 1 genome belonging to Korarchaeota and to the Nanoarchaeota, 3 belonging to the Thaumarchaeota and 1 genome belonging to an unclassified Archaea, totalling 150 Archaeal genomes. Crenarchaeota Acidilobales Desulforococcales Sulfolobales Thermoproteales Euryarchaeota Archaeoglobi Halobacteria Methanobacteria Methanococci Methanomicrobia Methanopyri Thermococci Thermoplasmata Unclassified Euryarchaeota Korarchaeota Nanoarchaeota Thaumarchaeota Cenarchaeales Nitrosopumilales Unclassified Archaea See also *Genome project *Human microbiome project *Lists ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thermoproteaceae
In taxonomy, the Thermoproteaceae are a family of the Thermoproteales. Phylogeny The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information The National Center for Biotechnology Information (NCBI) is part of the United States National Library of Medicine (NLM), a branch of the National Institutes of Health (NIH). It is approved and funded by the government of the United States. The ... (NCBI) References Further reading Scientific journals * * * * * * * Scientific books Scientific databases External links Archaea taxonomic families Thermoproteota {{Crenarchaeota-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Propionate
Propionic acid (, from the Greek words πρῶτος : ''prōtos'', meaning "first", and πίων : ''píōn'', meaning "fat"; also known as propanoic acid) is a naturally occurring carboxylic acid with chemical formula CH3CH2CO2H. It is a liquid with a pungent and unpleasant smell somewhat resembling body odor. The anion CH3CH2CO2− as well as the salts and esters of propionic acid are known as propionates or propanoates. History Propionic acid was first described in 1844 by Johann Gottlieb, who found it among the degradation products of sugar. Over the next few years, other chemists produced propionic acid by different means, none of them realizing they were producing the same substance. In 1847, French chemist Jean-Baptiste Dumas established all the acids to be the same compound, which he called propionic acid, from the Greek words πρῶτος (prōtos), meaning ''first'', and πίων (piōn), meaning ''fat'', because it is the smallest H(CH2)''n''COOH acid that exhibit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation. Pyruvic acid supplies energy to cells through the citric acid cycle (also known as the Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking. Chemistry In 1834, Théophile-Jules Pelouze distilled tartaric acid and isolated glutaric acid and another unknown organic acid. Jöns Jacob Berzelius characterized this other acid the following year and named pyruvic acid because it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Succinate
Succinic acid () is a dicarboxylic acid with the chemical formula (CH2)2(CO2H)2. The name derives from Latin ''succinum'', meaning amber. In living organisms, succinic acid takes the form of an anion, succinate, which has multiple biological roles as a metabolic intermediate being converted into fumarate by the enzyme succinate dehydrogenase in complex 2 of the electron transport chain which is involved in making ATP, and as a signaling molecule reflecting the cellular metabolic state. It is marketed as food additive E363. Succinate is generated in mitochondria via the tricarboxylic acid cycle (TCA). Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space, changing gene expression patterns, modulating epigenetic landscape or demonstrating hormone-like signaling. As such, succinate links cellular metabolism, especially ATP formation, to the regulation of cellular function. Dysregulation of succinate synthesis, and therefore A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Methanol
Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a light, volatile, colourless, flammable liquid with a distinctive alcoholic odour similar to that of ethanol (potable alcohol). A polar solvent, methanol acquired the name wood alcohol because it was once produced chiefly by the destructive distillation of wood. Today, methanol is mainly produced industrially by hydrogenation of carbon monoxide. Methanol consists of a methyl group linked to a polar hydroxyl group. With more than 20 million tons produced annually, it is used as a precursor to other commodity chemicals, including formaldehyde, acetic acid, methyl tert-butyl ether, methyl benzoate, anisole, peroxyacids, as well as a host of more specialised chemicals. Occurrence Small amounts of methanol are present in normal, healthy hu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archaea
Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebacteria kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from the other two domains, Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla. Classification is difficult because most have not been isolated in a laboratory and have been detected only by their gene sequences in environmental samples. Archaea and bacteria are generally similar in size and shape, although a few archaea have very different shapes, such as the flat, square cells of ''Haloquadratum walsbyi''. Despite this morphological similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes, notably for the enzymes involved ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formamide
Formamide is an amide derived from formic acid. It is a colorless liquid which is miscible with water and has an ammonia-like odor. It is chemical feedstock for the manufacture of sulfa drugs and other pharmaceuticals, herbicides and pesticides, and in the manufacture of hydrocyanic acid. It has been used as a softener for paper and fiber. It is a solvent for many ionic compounds. It has also been used as a solvent for resins and plasticizers. Some astrobiologists suggest that it may be an alternative to water as the main solvent in other forms of life. Formamides are compounds of the type RR′NCHO. One important formamide is dimethylformamide, (CH3)2NCHO. Production Historical production In the past, formamide was produced by treating formic acid with ammonia, which produces ammonium formate, which in turn yields formamide upon heating: :HCOOH + NH3 → HCOO− :HCOO− → HCONH2 + H2O Formamide is also generated by aminolysis of ethyl formate: :HCOOCH2CH3 + NH3 → H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]