HOME



picture info

Variational Autoencoder
In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. It is part of the families of probabilistic graphical models and variational Bayesian methods. In addition to being seen as an autoencoder neural network architecture, variational autoencoders can also be studied within the mathematical formulation of variational Bayesian methods, connecting a neural encoder network to its decoder through a probabilistic latent space (for example, as a multivariate Gaussian distribution) that corresponds to the parameters of a variational distribution. Thus, the encoder maps each point (such as an image) from a large complex dataset into a distribution within the latent space, rather than to a single point in that space. The decoder has the opposite function, which is to map from the latent space to the input space, again according to a distribution (although in practice, noise is rarely a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Reparameterization Trick
The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization. It allows for the efficient computation of gradients through random variables, enabling the optimization of parametric probability models using stochastic gradient descent, and the variance reduction of estimators. It was developed in the 1980s in operations research, under the name of "pathwise gradients", or "stochastic gradients". Its use in variational inference was proposed in 2013. Mathematics Let z be a random variable with distribution q_\phi(z), where \phi is a vector containing the parameters of the distribution. REINFORCE estimator Consider an objective function of the form:L(\phi) = \mathbb_ (z)/math>Without the reparameterization trick, estimating the gradient \nabla_\phi L(\phi) can be challenging, because the parameter appears in the ran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




VAE Basic
Vae or VAE may refer to: * Vae (name) * VAE Nortrak North America, a manufacturer of railroad track components * Validation des Acquis de l'Expérience, a procedure of granting degrees based on work experience in France * Variational autoencoder In machine learning, a variational autoencoder (VAE) is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling. It is part of the families of probabilistic graphical models and variational Bayesian metho ..., an artificial neural network architecture See also

* * {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Statistical Distance
In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points. A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence, and hence these distances are not directly related to measures of distances between probability measures. Again, a measure of distance between random variables may relate to the extent of dependence between them, rather than to their individual values. Many statistical distance measures are not metrics, and some are not symmetric. Some types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Gradient Ascent
Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function. The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a trajectory that maximizes that function; the procedure is then known as ''gradient ascent''. It is particularly useful in machine learning for minimizing the cost or loss function. Gradient descent should not be confused with local search algorithms, although both are iterative methods for optimization. Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847. Jacques Hadamard independently proposed a similar method in 1907. Its convergence properties for non-linear optimization problems were first studied by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Evidence Lower Bound
In variational Bayesian methods, the evidence lower bound (often abbreviated ELBO, also sometimes called the variational lower bound or negative variational free energy) is a useful lower bound on the log-likelihood of some observed data. The ELBO is useful because it provides a guarantee on the worst-case for the log-likelihood of some distribution (e.g. p(X)) which models a set of data. The actual log-likelihood may be higher (indicating an even better fit to the distribution) because the ELBO includes a Kullback-Leibler divergence (KL divergence) term which decreases the ELBO due to an internal part of the model being inaccurate despite good fit of the model overall. Thus improving the ELBO score indicates either improving the likelihood of the model p(X) or the fit of a component internal to the model, or both, and the ELBO score makes a good loss function, e.g., for training a deep neural network to improve both the model overall and the internal component. (The internal c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Cross Entropy
In information theory, the cross-entropy between two probability distributions p and q, over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution q, rather than the true distribution p. Definition The cross-entropy of the distribution q relative to a distribution p over a given set is defined as follows: H(p, q) = -\operatorname_p log q where \operatorname_p cdot/math> is the expected value operator with respect to the distribution p. The definition may be formulated using the Kullback–Leibler divergence D_(p \parallel q), divergence of p from q (also known as the ''relative entropy'' of p with respect to q). H(p, q) = H(p) + D_(p \parallel q), where H(p) is the entropy of p. For discrete probability distributions p and q with the same support \mathcal, this means The situation for continuous distributions is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Mean Squared Error
In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the true value. MSE is a risk function, corresponding to the expected value of the squared error loss. The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate. In machine learning, specifically empirical risk minimization, MSE may refer to the ''empirical'' risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution). The MSE is a measure of the quality of an estimator. As it is derived from the square of Euclidean distance, it is always a positive value that decreases as the erro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Backpropagation
In machine learning, backpropagation is a gradient computation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks. Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through dynamic programming. Strictly speaking, the term ''backpropagation'' refers only to an algorithm for efficiently computing the gradient, not how the gradient is used; but the term is often used loosely to refer to the entire learning algorithm – including how the gradient is used, such as by stochastic gradient descent, or as an intermediate step in a more complicated optimizer, such as Adaptive Moment Estimation. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Deep Learning
Deep learning is a subset of machine learning that focuses on utilizing multilayered neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data. The adjective "deep" refers to the use of multiple layers (ranging from three to several hundred or thousands) in the network. Methods used can be either supervised, semi-supervised or unsupervised. Some common deep learning network architectures include fully connected networks, deep belief networks, recurrent neural networks, convolutional neural networks, generative adversarial networks, transformers, and neural radiance fields. These architectures have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Gaussian Distribution
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real number, real-valued random variable. The general form of its probability density function is f(x) = \frac e^\,. The parameter is the Mean#Mean of a probability distribution, mean or expected value, expectation of the distribution (and also its median and mode (statistics), mode), while the parameter \sigma^2 is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural science, natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Chain Rule (probability)
In probability theory, the chain rule (also called the general product rule) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities. This rule allows one to express a joint probability in terms of only conditional probabilities. The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities. Chain rule for events Two events For two events A and B, the chain rule states that :\mathbb P(A \cap B) = \mathbb P(B \mid A) \mathbb P(A), where \mathbb P(B \mid A) denotes the conditional probability of B given A. Example An Urn A has 1 black ball and 2 white balls and another Urn B has 1 black ball and 3 white balls. Suppose we pick an urn at random and then select a ball from that urn. Let event A be c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]