Univalent Functions
   HOME
*





Univalent Functions
In mathematics, in the branch of complex analysis, a holomorphic function on an open subset of the complex plane is called univalent if it is injective. Examples The function f \colon z \mapsto 2z + z^2 is univalent in the open unit disc, as f(z) = f(w) implies that f(z) - f(w) = (z-w)(z+w+2) = 0. As the second factor is non-zero in the open unit disc, f must be injective. Basic properties One can prove that if G and \Omega are two open connected sets in the complex plane, and :f: G \to \Omega is a univalent function such that f(G) = \Omega (that is, f is surjective), then the derivative of f is never zero, f is invertible, and its inverse f^ is also holomorphic. More, one has by the chain rule :(f^)'(f(z)) = \frac for all z in G. Comparison with real functions For real analytic functions, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function :f: (-1, 1) \to (-1, 1) \, given by ''ƒ''( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schlicht Function
In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was posed by and finally proven by . The statement concerns the Taylor coefficients a_n of a univalent function, i.e. a one-to-one holomorphic function that maps the unit disk into the complex plane, normalized as is always possible so that a_0=0 and a_1=1. That is, we consider a function defined on the open unit disk which is holomorphic and injective ('' univalent'') with Taylor series of the form :f(z)=z+\sum_ a_n z^n. Such functions are called ''schlicht''. The theorem then states that : , a_n, \leq n \quad \textn\geq 2. The Koebe function (see below) is a function in which a_n=n for all n, and it is schlicht, so we cannot find a stricter limit on the absolute value of the nth coefficient. Schlicht functions The normaliza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann Mapping Theorem
In complex analysis, the Riemann mapping theorem states that if ''U'' is a non-empty simply connected open subset of the complex number plane C which is not all of C, then there exists a biholomorphic mapping ''f'' (i.e. a bijective holomorphic mapping whose inverse is also holomorphic) from ''U'' onto the open unit disk :D = \. This mapping is known as a Riemann mapping. Intuitively, the condition that ''U'' be simply connected means that ''U'' does not contain any “holes”. The fact that ''f'' is biholomorphic implies that it is a conformal map and therefore angle-preserving. Such a map may be interpreted as preserving the shape of any sufficiently small figure, while possibly rotating and scaling (but not reflecting) it. Henri Poincaré proved that the map ''f'' is essentially unique: if ''z''0 is an element of ''U'' and φ is an arbitrary angle, then there exists precisely one ''f'' as above such that ''f''(''z''0) = 0 and such that the argument of the derivative of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Koebe Quarter Theorem
In complex analysis, a branch of mathematics, the Koebe 1/4 theorem states the following: Koebe Quarter Theorem. The image of an injective analytic function f:\mathbf\to\mathbb from the unit disk \mathbf onto a subset of the complex plane contains the disk whose center is f(0) and whose radius is , f'(0), /4. The theorem is named after Paul Koebe, who conjectured the result in 1907. The theorem was proven by Ludwig Bieberbach in 1916. The example of the Koebe function shows that the constant 1/4 in the theorem cannot be improved (increased). A related result is the Schwarz lemma, and a notion related to both is conformal radius. Grönwall's area theorem Suppose that :g(z) = z +b_1z^ + b_2 z^ + \cdots is univalent in , z, >1. Then :\sum_ n, b_n, ^2 \le 1. In fact, if r > 1, the complement of the image of the disk , z, >r is a bounded domain X(r). Its area is given by : \int_ dx\,dy = \int_\overline\,dz = \int_\overline\,dg=\pi r^2 - \pi\sum n, b_n, ^2 r^. Since the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




De Branges's Theorem
In complex analysis, de Branges's theorem, or the Bieberbach conjecture, is a theorem that gives a necessary condition on a holomorphic function in order for it to map the open unit disk of the complex plane injectively to the complex plane. It was posed by and finally proven by . The statement concerns the Taylor coefficients a_n of a univalent function, i.e. a one-to-one holomorphic function that maps the unit disk into the complex plane, normalized as is always possible so that a_0=0 and a_1=1. That is, we consider a function defined on the open unit disk which is holomorphic and injective ('' univalent'') with Taylor series of the form :f(z)=z+\sum_ a_n z^n. Such functions are called ''schlicht''. The theorem then states that : , a_n, \leq n \quad \textn\geq 2. The Koebe function (see below) is a function in which a_n=n for all n, and it is schlicht, so we cannot find a stricter limit on the absolute value of the nth coefficient. Schlicht functions The normaliza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biholomorphic Mapping
In the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formal definition Formally, a ''biholomorphic function'' is a function \phi defined on an open subset ''U'' of the n-dimensional complex space C''n'' with values in C''n'' which is holomorphic and one-to-one, such that its image is an open set V in C''n'' and the inverse \phi^:V\to U is also holomorphic. More generally, ''U'' and ''V'' can be complex manifolds. As in the case of functions of a single complex variable, a sufficient condition for a holomorphic map to be biholomorphic onto its image is that the map is injective, in which case the inverse is also holomorphic (e.g., see Gunning 1990, Theorem I.11). If there exists a biholomorphism \phi \colon U \to V, we say that ''U'' and ''V'' are biholomorphically equivalent or that they are biholomorp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Primitive Root Of Unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation :z^n = 1. Unless otherwise specified, the roots of unity may be taken to be complex numbers (in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chain Rule
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , then the chain rule is, in Lagrange's notation, :h'(x) = f'(g(x)) g'(x). or, equivalently, :h'=(f\circ g)'=(f'\circ g)\cdot g'. The chain rule may also be expressed in Leibniz's notation. If a variable depends on the variable , which itself depends on the variable (that is, and are dependent variables), then depends on as well, via the intermediate variable . In this case, the chain rule is expressed as :\frac = \frac \cdot \frac, and : \left.\frac\_ = \left.\frac\_ \cdot \left. \frac\_ , for indicating at which points the derivatives have to be evaluated. In integration, the counterpart to the chain rule is the substitution rule. Intuitive explanation Intuitively, the chain rule states that knowing the instantaneous rate of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is a right inverse of . (An identity element is an element such that and for all and for which the left-hand sides are defined.) When the operation is associative, if an element has both a left inverse and a right inverse, then these two inverses are equal and unique; they are called the ''inverse element'' or simply the ''inverse''. Often an adjective is added for specifying the operation, such as in additive inverse, multiplicative inverse, and functional inverse. In this case (associative operation), an invertible element is an element that has an inverse. Inverses are commonly used in groupswhere every element is invertible, and ringswhere invertible elements are also called units. They are also commonly used for operations th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]