Unit Sphere Bundle
   HOME
*





Unit Sphere Bundle
In Riemannian geometry, the unit tangent bundle of a Riemannian manifold (''M'', ''g''), denoted by T1''M'', UT(''M'') or simply UT''M'', is the unit sphere bundle for the tangent bundle T(''M''). It is a fiber bundle over ''M'' whose fiber at each point is the unit sphere in the tangent bundle: :\mathrm (M) := \coprod_ \left\, where T''x''(''M'') denotes the tangent space to ''M'' at ''x''. Thus, elements of UT(''M'') are pairs (''x'', ''v''), where ''x'' is some point of the manifold and ''v'' is some tangent direction (of unit length) to the manifold at ''x''. The unit tangent bundle is equipped with a natural projection :\pi : \mathrm (M) \to M, :\pi : (x, v) \mapsto x, which takes each point of the bundle to its base point. The fiber ''π''−1(''x'') over each point ''x'' ∈ ''M'' is an (''n''−1)-sphere S''n''−1, where ''n'' is the dimension of ''M''. The unit tangent bundle is therefore a sphere bundle over ''M'' with fiber S''n''−1. The definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "''Ueber die Hypothesen, welche der Geometrie zu Grunde liegen''" ("On the Hypotheses on which Geometry is Based.") It is a very broad and abstract generalization of the differential geometry of surfaces in R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ergodic Theory
Ergodic theory (Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Topology
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the ''geometric'' properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology. The central goal of the field of differential topology is the classification of all smooth manifolds up to diffeomorphism. Since dimension is an invariant of smooth manifolds up to diffeomorphism type, this classification is often studied by classifying the (connected) manifolds in each dimension separately: * In di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jerrold Marsden
Jerrold Eldon Marsden (August 17, 1942 – September 21, 2010) was a Canadian mathematician. He was the Carl F. Braun Professor of Engineering and Control & Dynamical Systems at the California Institute of Technology.. Marsden is listed as an ISI highly cited researcher. Career Marsden earned his B.Sc. in Mathematics at the University of Toronto and his Ph.D. (Mathematical Physics) at Princeton University in 1968 under Arthur S. Wightman. Thereafter, he worked at various universities and research institutes in the US, Canada, the United Kingdom, France and Germany. He was one of the founders of the Fields Institute in Toronto, Canada, and directed it until 1994. At the California Institute of Technology he was the Carl F. Braun Professor of Engineering and Control & Dynamical Systems. Marsden, together with Alan Weinstein, was one of the world leading authorities in mathematical and theoretical classical mechanics. He has laid much of the foundation for symplectic topology. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ralph Abraham (mathematician)
Ralph Herman Abraham (born July 4, 1936) is an American mathematician. He has been a member of the faculty of the University of California, Santa Cruz (where he is currently professor emeritus of mathematics) since 1968. Life and work Abraham earned his BSE (1956), MS (1958) and PhD (1960) from the University of Michigan. Prior to joining Santa Cruz, he held positions at the University of California, Berkeley (research lecturer in mathematics; 1960-1962), Columbia University (postdoctoral fellow and assistant professor of mathematics; 1962-1964) and Princeton University (assistant professor of mathematics; 1964-1968). He has also held visiting positions in Amsterdam, Paris, Warwick, Barcelona, Basel, and Florence. He founded the Visual Math Institute at Santa Cruz in 1975; at that time, it was called the "Visual Mathematics Project". He is editor of ''World Futures'' and for the ''International Journal of Bifurcations and Chaos''. Abraham is a member of cultural historian Wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jürgen Jost
Jürgen Jost (born 9 June 1956) is a German mathematician specializing in geometry. He has been a director of the Max Planck Institute for Mathematics in the Sciences in Leipzig since 1996. Life and work In 1975, he began studying mathematics, physics, economics and philosophy. In 1980 he received a Dr. rer. nat. from the University of Bonn under the supervision of Stefan Hildebrandt. In 1984 he was at the University of Bonn for the habilitation. After his habilitation, he was at the Ruhr University Bochum, the chair of Mathematics X, Analysis. During this time he was the coordinator of the project "Stochastic Analysis and systems with infinitely many degrees of freedom" July 1987 to December 1996. For this work he received the 1993 Gottfried Wilhelm Leibniz Prize, awarded by the Deutsche Forschungsgemeinschaft. Since 1996, he has been director and scientific member at the Max Planck Institute for Mathematics in the Sciences in Leipzig. After more than 10 years of work in Boch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sasakian Manifold
In differential geometry, a Sasakian manifold (named after Shigeo Sasaki) is a contact manifold (M,\theta) equipped with a special kind of Riemannian metric g, called a ''Sasakian'' metric. Definition A Sasakian metric is defined using the construction of the ''Riemannian cone''. Given a Riemannian manifold (M,g), its Riemannian cone is the product :(M\times ^)\, of M with a half-line ^, equipped with the ''cone metric'' : t^2 g + dt^2,\, where t is the parameter in ^. A manifold M equipped with a 1-form \theta is contact if and only if the 2-form :t^2\,d\theta + 2t\, dt \cdot \theta\, on its cone is symplectic (this is one of the possible definitions of a contact structure). A contact Riemannian manifold is Sasakian, if its Riemannian cone with the cone metric is a Kähler manifold with Kähler form :t^2\,d\theta + 2t\,dt \cdot \theta. Examples As an example consider :S^\hookrightarrow ^=^ where the right hand side is a natural Kähler manifold and read as the cone ove ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Isomorphism
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Levi-Civita Connection
In Riemannian or pseudo Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves the (pseudo-)Riemannian metric and is torsion-free. The fundamental theorem of Riemannian geometry states that there is a unique connection which satisfies these properties. In the theory of Riemannian and pseudo-Riemannian manifolds the term covariant derivative is often used for the Levi-Civita connection. The components (structure coefficients) of this connection with respect to a system of local coordinates are called Christoffel symbols. History The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel. Levi-Civita, along with Gregorio Ricci-Curbastro, used Christoffel's symbols to define the notion of parallel transport and explore the relationship of parallel transp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Measure
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Formal definition Let X be a locally compact Hausdorff space, and let \mathfrak(X) be the smallest σ-algebra that contains the open sets of X; this is known as the σ-algebra of Borel sets. A Borel measure is any measure \mu defined on the σ-algebra of Borel sets. A few authors require in addition that \mu is locally finite, meaning that \mu(C) 0 and μ(''B''(''x'', ''r'')) ≤ ''rs'' holds for some constant ''s'' > 0 and for every ball ''B''(''x'', ''r'') in ''X'', then the Hausdorff dimension dimHaus(''X'') ≥ ''s''. A partial converse is provided by the Frostman lemma: Lemma: Let ''A'' be a Borel subset of R''n'', and let ''s'' > 0. Then the following are equivalent: *''H''''s''(''A'') > 0, where ''H''''s'' den ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]