In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the concept of a measure is a generalization and formalization of
geometrical measures (
length,
area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an ope ...
,
volume
Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
) and other common notions, such as
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
and
probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speakin ...
of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in
probability theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
,
integration theory, and can be generalized to assume
negative values, as with
electrical charge
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
. Far-reaching generalizations (such as
spectral measure
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his disse ...
s and
projection-valued measure
In mathematics, particularly in functional analysis, a projection-valued measure (PVM) is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. Projection-valued measures are ...
s) of measure are widely used in
quantum physics and physics in general.
The intuition behind this concept dates back to
ancient Greece
Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean Sea, Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of Classical Antiquity, classical antiquity ( AD 600), th ...
, when
Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of
Émile Borel
Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability.
Biography
Borel was ...
,
Henri Lebesgue
Henri Léon Lebesgue (; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of ...
,
Nikolai Luzin
Nikolai Nikolaevich Luzin (also spelled Lusin; rus, Никола́й Никола́евич Лу́зин, p=nʲɪkɐˈlaj nʲɪkɐˈlaɪvʲɪtɕ ˈluzʲɪn, a=Ru-Nikilai Nikilayevich Luzin.ogg; 9 December 1883 – 28 January 1950) was a Soviet/Ru ...
,
Johann Radon
Johann Karl August Radon (; 16 December 1887 – 25 May 1956) was an Austrian mathematician. His doctoral dissertation was on the calculus of variations (in 1910, at the University of Vienna).
Life
RadonBrigitte Bukovics: ''Biography of Johan ...
,
Constantin Carathéodory
Constantin Carathéodory ( el, Κωνσταντίνος Καραθεοδωρή, Konstantinos Karatheodori; 13 September 1873 – 2 February 1950) was a Greek mathematician who spent most of his professional career in Germany. He made significant ...
, and
Maurice Fréchet Maurice may refer to:
People
*Saint Maurice (died 287), Roman legionary and Christian martyr
*Maurice (emperor) or Flavius Mauricius Tiberius Augustus (539–602), Byzantine emperor
* Maurice (bishop of London) (died 1107), Lord Chancellor and L ...
, among others.
Definition
Let
be a set and
a
-algebra over
A
set function
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R an ...
from
to the
extended real number line is called a measure if it satisfies the following properties:
*Non-negativity: For all
in
we have
*Null empty set:
*Countable additivity (or
-additivity): For all
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
collections
of pairwise
disjoint sets in Σ,
If at least one set
has finite measure, then the requirement that
is met automatically. Indeed, by countable additivity,
and therefore
If the condition of non-negativity is omitted but the second and third of these conditions are met, and
takes on at most one of the values
then
is called a ''
signed measure
In mathematics, signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values.
Definition
There are two slightly different concepts of a signed measure, depending on whether or not ...
''.
The pair
is called a ''
measurable space
In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured.
Definition
Consider a set X and a σ-algebra \mathcal A on X. Then the ...
'', and the members of
are called measurable sets.
A
triple
Triple is used in several contexts to mean "threefold" or a " treble":
Sports
* Triple (baseball), a three-base hit
* A basketball three-point field goal
* A figure skating jump with three rotations
* In bowling terms, three strikes in a row
* ...
is called a ''
measure space''. A
probability measure is a measure with total measure one – that is,
A
probability space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
is a measure space with a probability measure.
For measure spaces that are also
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s various compatibility conditions can be placed for the measure and the topology. Most measures met in practice in
analysis
Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
(and in many cases also in
probability theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
) are
Radon measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel ...
s. Radon measures have an alternative definition in terms of linear functionals on the
locally convex topological vector space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological ...
of
continuous functions with
compact support. This approach is taken by
Bourbaki (2004) and a number of other sources. For more details, see the article on
Radon measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel ...
s.
Instances
Some important measures are listed here.
* The
counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity ...
is defined by
= number of elements in
* The
Lebesgue measure on
is a
complete
Complete may refer to:
Logic
* Completeness (logic)
* Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable
Mathematics
* The completeness of the real numbers, which implies t ...
translation-invariant measure on a ''σ''-algebra containing the
intervals in
such that
; and every other measure with these properties extends Lebesgue measure.
* Circular
angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle.
Angles formed by two rays lie in the plane that contains the rays. Angles a ...
measure is invariant under
rotation, and
hyperbolic angle
In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic function ...
measure is invariant under
squeeze mapping
In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation or shear mapping.
For a fixed positive real number , th ...
.
* The
Haar measure for a
locally compact topological group
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
is a generalization of the Lebesgue measure (and also of counting measure and circular angle measure) and has similar uniqueness properties.
* The
Hausdorff measure
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that as ...
is a generalization of the Lebesgue measure to sets with non-integer dimension, in particular, fractal sets.
* Every
probability space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
gives rise to a measure which takes the value 1 on the whole space (and therefore takes all its values in the
unit interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysis ...
, 1. Such a measure is called a ''probability measure''. See
probability axioms
The Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probabili ...
.
* The
Dirac measure
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element ''x'' or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields.
...
''δ''
''a'' (cf.
Dirac delta function) is given by ''δ''
''a''(''S'') = ''χ''
''S''(a), where ''χ''
''S'' is the
indicator function of
The measure of a set is 1 if it contains the point
and 0 otherwise.
Other 'named' measures used in various theories include:
Borel measure,
Jordan measure In mathematics, the Peano–Jordan measure (also known as the Jordan content) is an extension of the notion of size (length, area, volume) to shapes more complicated than, for example, a triangle, disk, or parallelepiped.
It turns out that for a ...
,
ergodic measure,
Gaussian measure
In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space R''n'', closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are nam ...
,
Baire measure In mathematics, a Baire measure is a measure on the σ-algebra of Baire sets of a topological space whose value on every compact Baire set is finite. In compact metric spaces the Borel sets and the Baire sets are the same, so Baire measures are the ...
,
Radon measure
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space ''X'' that is finite on all compact sets, outer regular on all Borel ...
,
Young measure, and
Loeb measure In mathematics, a Loeb space is a type of measure space introduced by using nonstandard analysis.
Construction
Loeb's construction starts with a finitely additive map \nu from an internal algebra \mathcal A of sets to the nonstandard reals. Def ...
.
In physics an example of a measure is spatial distribution of
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
(see for example,
gravity potential
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric po ...
), or another non-negative
extensive property
Physical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one ...
,
conserved (see
conservation law for a list of these) or not. Negative values lead to signed measures, see "generalizations" below.
*
Liouville measure
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sym ...
, known also as the natural volume form on a symplectic manifold, is useful in classical statistical and Hamiltonian mechanics.
*
Gibbs measure In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems.
Th ...
is widely used in statistical mechanics, often under the name
canonical ensemble
In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat ...
.
Basic properties
Let
be a measure.
Monotonicity
If
and
are measurable sets with
then
Measure of countable unions and intersections
Subadditivity
For any
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of (not necessarily disjoint) measurable sets
in
Continuity from below
If
are measurable sets that are increasing (meaning that
) then the
union
Union commonly refers to:
* Trade union, an organization of workers
* Union (set theory), in mathematics, a fundamental operation on sets
Union may also refer to:
Arts and entertainment
Music
* Union (band), an American rock group
** ''Un ...
of the sets
is measurable and
Continuity from above
If
are measurable sets that are decreasing (meaning that
) then the
intersection of the sets
is measurable; furthermore, if at least one of the
has finite measure then
This property is false without the assumption that at least one of the
has finite measure. For instance, for each
let
which all have infinite Lebesgue measure, but the intersection is empty.
Other properties
Completeness
A measurable set
is called a ''null set'' if
A subset of a null set is called a ''negligible set''. A negligible set need not be measurable, but every measurable negligible set is automatically a null set. A measure is called ''complete'' if every negligible set is measurable.
A measure can be extended to a complete one by considering the σ-algebra of subsets
which differ by a negligible set from a measurable set
that is, such that the
symmetric difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \.
Th ...
of
and
is contained in a null set. One defines
to equal
μ = μ (a.e.)
If