HOME
*





Undefinability Theorem
Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1933, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that ''arithmetical truth cannot be defined in arithmetic''. The theorem applies more generally to any sufficiently strong formal system, showing that truth in the standard model of the system cannot be defined within the system. History In 1931, Kurt Gödel published the incompleteness theorems, which he proved in part by showing how to represent the syntax of formal logic within first-order arithmetic. Each expression of the formal language of arithmetic is assigned a distinct number. This procedure is known variously as Gödel numbering, ''coding'' and, more generally, as arithmetization. In particular, various ''sets'' of expressions are coded as sets of numbers. For various syntactic properties (such as ''being a formula'', ''being a sentence'', etc.), thes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alfred Tarski
Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983. Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with his contemporary, Kurt Gödel, he cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantifier (logic)
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P. On the other hand, the existential quantifier \exists in the formula \exists x P(x) expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable. The mostly commonly used quantifiers are \forall and \exists. These quantifiers are standardly defined as duals; in classical logic, they are interdefinable using negation. They can also be used to define more complex quantifiers, as in the formula \neg \exists x P(x) which expresses that nothing has the property P. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Self-reference
Self-reference occurs in natural or formal languages when a sentence, idea or formula refers to itself. The reference may be expressed either directly—through some intermediate sentence or formula—or by means of some encoding. In philosophy, it also refers to the ability of a subject to speak of or refer to itself, that is, to have the kind of thought expressed by the first person nominative singular pronoun "I" in English. Self-reference is studied and has applications in mathematics, philosophy, computer programming, second-order cybernetics, and linguistics, as well as in humor. Self-referential statements are sometimes paradoxical, and can also be considered recursive. In logic, mathematics and computing In classical philosophy, paradoxes were created by self-referential concepts such as the omnipotence paradox of asking if it was possible for a being to exist so powerful that it could create a stone that it could not lift. The Epimenides paradox, 'All Cretans are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Negation
In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false when P is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes ''truth'' to ''falsity'' (and vice versa). In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition P is the proposition whose proofs are the refutations of P. Definition ''Classical negation'' is an operation on one logical value, typically the value of a proposition, that produces a value of ''true'' when its operand is false, and a value of ''false'' when its operand is true. Thus if statement is true, then \neg P (pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reductio Ad Absurdum
In logic, (Latin for "reduction to absurdity"), also known as (Latin for "argument to absurdity") or ''apagogical arguments'', is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction. This argument form traces back to Ancient Greek philosophy and has been used throughout history in both formal mathematical and philosophical reasoning, as well as in debate. Examples The "absurd" conclusion of a ''reductio ad absurdum'' argument can take a range of forms, as these examples show: * The Earth cannot be flat; otherwise, since Earth assumed to be finite in extent, we would find people falling off the edge. * There is no smallest positive rational number because, if there were, then it could be divided by two to get a smaller one. The first example argues that denial of the premise would result in a ridiculous conclusion, against the evidence of our senses. The second example is a mathematical proof ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arithmetical Hierarchy
In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy is important in recursion theory, effective descriptive set theory, and the study of formal theories such as Peano arithmetic. The Tarski–Kuratowski algorithm provides an easy way to get an upper bound on the classifications assigned to a formula and the set it defines. The hyperarithmetical hierarchy and the analytical hierarchy extend the arithmetical hierarchy to classify additional formulas and sets. The arithmetical hierarchy of formulas The arithmetical hierarchy assigns classifications to the formulas in the language of first-order arithmetic. The classifications are denoted \Sigma^0_n and \Pi^0_n for natural numbers ''n'' (inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Post's Theorem
In computability theory Post's theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees. Background The statement of Post's theorem uses several concepts relating to definability and recursion theory. This section gives a brief overview of these concepts, which are covered in depth in their respective articles. The arithmetical hierarchy classifies certain sets of natural numbers that are definable in the language of Peano arithmetic. A formula is said to be \Sigma^_m if it is an existential statement in prenex normal form (all quantifiers at the front) with m alternations between existential and universal quantifiers applied to a formula with bounded quantifiers only. Formally a formula \phi(s) in the language of Peano arithmetic is a \Sigma^_m formula if it is of the form :\left(\exists n^1_1\exists n^1_2\cdots\exists n^1_\right)\left(\forall n^2_1 \cdots \forall n^2_\right)\left(\exists n^3_1\cdots\right)\cdots\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Argument
A diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: *Cantor's diagonal argument (the earliest) *Cantor's theorem *Russell's paradox *Diagonal lemma ** Gödel's first incompleteness theorem **Tarski's undefinability theorem *Halting problem *Kleene's recursion theorem See also * Diagonalization (other) In logic and mathematics, diagonalization may refer to: * Matrix diagonalization, a construction of a diagonal matrix (with nonzero entries only on the main diagonal) that is similar to a given matrix * Diagonal argument (other), various ...
{{mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Second-order Arithmetic
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book ''Grundlagen der Mathematik''. The standard axiomatization of second-order arithmetic is denoted by Z2. Second-order arithmetic includes, but is significantly stronger than, its first-order counterpart Peano arithmetic. Unlike Peano arithmetic, second-order arithmetic allows quantification over sets of natural numbers as well as numbers themselves. Because real numbers can be represented as (infinite) sets of natural numbers in well-known ways, and because second-order arithmetic allows quantification over such sets, it is possible to formalize the real numbers in second-order arithmetic. For this reason, secon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Predicate
In formal theories of truth, a truth predicate is a fundamental concept based on the sentences of a formal language as interpreted logically. That is, it formalizes the concept that is normally expressed by saying that a sentence, statement or idea "is true." Languages which allow a truth predicate Based on "Chomsky Definition", a language is assumed to be a countable set of sentences, each of finite length, and constructed out of a countable set of symbols. A theory of syntax is assumed to introduce symbols, and rules to construct well-formed sentences. A language is called fully interpreted if meanings are attached to its sentences so that they all are either true or false. A fully interpreted language ''L'' which does not have a truth predicate can be extended to a fully interpreted language ''Ľ'' that contains a truth predicate ''T'', i.e., the sentence ''A'' ↔ ''T''(⌈''A''⌉) is true for every sentence ''A'' of ''Ľ'', where ''T''(⌈''A''⌉) stands for "the sentence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Structure (mathematical Logic)
In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it. Universal algebra studies structures that generalize the algebraic structures such as groups, rings, fields and vector spaces. The term universal algebra is used for structures with no relation symbols. Model theory has a different scope that encompasses more arbitrary theories, including foundational structures such as models of set theory. From the model-theoretic point of view, structures are the objects used to define the semantics of first-order logic. For a given theory in model theory, a structure is called a model if it satisfies the defining axioms of that theory, although it is sometimes disambiguated as a ''semantic model'' when one discusses the notion in the more general setting of mathematical models. Logicians sometimes refer to structures as " interpretations", whereas the term "interpretation" generally has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]