Treatise On Electricity And Magnetism
   HOME
*



picture info

Treatise On Electricity And Magnetism
''A Treatise on Electricity and Magnetism'' is a two-volume treatise on electromagnetism written by James Clerk Maxwell in 1873. Maxwell was revising the ''Treatise'' for a second edition when he died in 1879. The revision was completed by William Davidson Niven for publication in 1881. A third edition was prepared by J. J. Thomson for publication in 1892. The treatise is said to be notoriously hard to read, containing plenty of ideas but lacking both the clear focus and orderliness that may have allowed it catch on more easily.Bruce J. Hunt (1991) ''The Maxwellians'', page 13 It was noted by one historian of science that Maxwell's attempt at a comprehensive treatise on all of electrical science tended to bury the important results of his work under "long accounts of miscellaneous phenomena discussed from several points of view." He goes on to say that, outside the treatment of the Faraday effect, Maxwell failed to expound on his earlier work, especially the generation of elect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon. Maxwell's equations for electromagnetism have been called the " second great unification in physics" where the first one had been realised by Isaac Newton. With the publication of "A Dynamical Theory of the Electromagnetic Field" in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. (This article accompanied an 8 December 1864 presentation by Maxwell to the Royal Society. His statement that "light and magnetism are affections of the same substance" is at page 499.) The unification of light and electrical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Potential Theory
In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation—or in the vacuum, Laplace's equation. There is considerable overlap between potential theory and the theory of Poisson's equation to the extent that it is impossible to draw a distinction between these two fields. The difference is more one of emphasis than subject matter and rests on the following distinction: potential theory focuses on the properties of the functions as opposed to the properties of the equation. For example, a result about the singularities of harmonic functions would be said to belong to potential theory whilst a result on how the solution depends ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Macfarlane
Alexander Macfarlane FRSE LLD (21 April 1851 – 28 August 1913) was a Scottish logician, physicist, and mathematician. Life Macfarlane was born in Blairgowrie, Scotland, to Daniel MacFarlane (Shoemaker, Blairgowire) and Ann Small. He studied at the University of Edinburgh. His doctoral thesis "The disruptive discharge of electricity" reported on experimental results from the laboratory of Peter Guthrie Tait. In 1878 Macfarlane spoke at the Royal Society of Edinburgh on algebraic logic as introduced by George Boole. He was elected a Fellow of the Royal Society of Edinburgh. His proposers were Peter Guthrie Tait, Philip Kelland, Alexander Crum Brown, and John Hutton Balfour. The next year he published ''Principles of the Algebra of Logic'' which interpreted Boolean variable expressions with algebraic manipulation. During his life, Macfarlane played a prominent role in research and education. He taught at the universities of Edinburgh and St Andrews, was physics profess ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Internet Archive
The Internet Archive is an American digital library with the stated mission of "universal access to all knowledge". It provides free public access to collections of digitized materials, including websites, software applications/games, music, movies/videos, moving images, and millions of books. In addition to its archiving function, the Archive is an activist organization, advocating a free and open Internet. , the Internet Archive holds over 35 million books and texts, 8.5 million movies, videos and TV shows, 894 thousand software programs, 14 million audio files, 4.4 million images, 2.4 million TV clips, 241 thousand concerts, and over 734 billion web pages in the Wayback Machine. The Internet Archive allows the public to upload and download digital material to its data cluster, but the bulk of its data is collected automatically by its web crawlers, which work to preserve as much of the public web as possible. Its web archiving, web archive, the Wayback Machine, contains hu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oliver Heaviside
Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vector calculus, and rewrote Maxwell's equations in the form commonly used today. He significantly shaped the way Maxwell's equations are understood and applied in the decades following Maxwell's death. His formulation of the telegrapher's equations became commercially important during his own lifetime, after their significance went unremarked for a long while, as few others were versed at the time in his novel methodology. Although at odds with the scientific establishment for most of his life, Heaviside changed the face of telecommunications, mathematics, and science. Biography Early life Heaviside was born in Camden Town, London, at 55 Kings Street (now Plender Street), the youngest of three children of Thomas, a draughtsman and wood engr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann Helmholtz
Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Association, the largest German association of research institutions, is named in his honor. In the fields of physiology and psychology, Helmholtz is known for his mathematics concerning the eye, theories of vision, ideas on the visual perception of space, color vision research, the sensation of tone, perceptions of sound, and empiricism in the physiology of perception. In physics, he is known for his theories on the conservation of energy, work in electrodynamics, chemical thermodynamics, and on a mechanical foundation of thermodynamics. As a philosopher, he is known for his philosophy of science, ideas on the relation between the laws of perception and the laws of nature, the science of aesthetics, and ideas on the civilizing power of science. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Michael Faraday
Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic induction, diamagnetism and electrolysis. Although Faraday received little formal education, he was one of the most influential scientists in history. It was by his research on the magnetic field around a conductor carrying a direct current that Faraday established the concept of the electromagnetic field in physics. Faraday also established that magnetism could affect rays of light and that there was an underlying relationship between the two phenomena.. the 1911 Encyclopædia Britannica. He similarly discovered the principles of electromagnetic induction, diamagnetism, and the laws of electrolysis. His inventions of electromagnetic rotary devices formed the foundation of electric motor technology, and it was largely due to his efforts t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hermann Von Helmholtz
Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Association, the largest German association of research institutions, is named in his honor. In the fields of physiology and psychology, Helmholtz is known for his mathematics concerning the eye, theories of vision, ideas on the visual perception of space, color vision research, the sensation of tone, perceptions of sound, and empiricism in the physiology of perception. In physics, he is known for his theories on the conservation of energy, work in electrodynamics, chemical thermodynamics, and on a mechanical foundation of thermodynamics. As a philosopher, he is known for his philosophy of science, ideas on the relation between the laws of perception and the laws of nature, the science of aesthetics, and ideas on the civilizing power of science. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pierre Duhem
Pierre Maurice Marie Duhem (; 9 June 1861 – 14 September 1916) was a French theoretical physicist who worked on thermodynamics, hydrodynamics, and the theory of elasticity. Duhem was also a historian of science, noted for his work on the European Middle Ages, which is regarded as having created the field of the history of medieval science. As a philosopher of science, he is remembered principally for his views on the indeterminacy of experimental criteria (see Duhem–Quine thesis). Theoretical physics Among scientists, Duhem is best known today for his work on chemical thermodynamics, and in particular for the Gibbs–Duhem and Duhem–Margules equations. His approach was strongly influenced by the early works of Josiah Willard Gibbs, which Duhem effectively explicated and promoted among French scientists. In continuum mechanics, he is also remembered for his contribution to what is now called the Clausius–Duhem inequality. Duhem was convinced that all physical phenome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

George Chrystal
George Chrystal FRSE FRS (8 March 1851 – 3 November 1911) was a Scottish mathematician. He is primarily know for his books on algebra and his studies of seiches (wave patterns in large inland bodies of water) which earned him a Gold Medal from the Royal Society of London that was confirmed shortly after his death. Life He was born in Old Meldrum on 8 March 1851, the son of Margaret (née Burr) and William Chrystal, a wealthy farmer and grain merchant. He was educated at Aberdeen Grammar School and the University of Aberdeen. In 1872, he moved to study under James Clerk Maxwell at Peterhouse, Cambridge. He graduated Second Wrangler in 1875, joint with William Burnside, and was elected a fellow of Corpus Christi. He was appointed to the Regius Chair of Mathematics at the University of St Andrews in 1877, and then in 1879 to the Chair in Mathematics at the University of Edinburgh. In 1911, he was awarded the Royal Medal of the Royal Society for his researches into the sur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nature (journal)
''Nature'' is a British weekly scientific journal founded and based in London, England. As a multidisciplinary publication, ''Nature'' features peer-reviewed research from a variety of academic disciplines, mainly in science and technology. It has core editorial offices across the United States, continental Europe, and Asia under the international scientific publishing company Springer Nature. ''Nature'' was one of the world's most cited scientific journals by the Science Edition of the 2019 ''Journal Citation Reports'' (with an ascribed impact factor of 42.778), making it one of the world's most-read and most prestigious academic journals. , it claimed an online readership of about three million unique readers per month. Founded in autumn 1869, ''Nature'' was first circulated by Norman Lockyer and Alexander Macmillan as a public forum for scientific innovations. The mid-20th century facilitated an editorial expansion for the journal; ''Nature'' redoubled its efforts in exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Action At A Distance
In physics, action at a distance is the concept that an object can be affected without being physically touched (as in mechanical contact) by another object. That is, it is the non-local interaction of objects that are separated in space. Non-contact forces is action at a distance affecting specifically an object's motion. This term was used most often in the context of early theories of gravity and electromagnetism to describe how an object responds to the influence of distant objects. For example, Coulomb's law and Newton's law of universal gravitation are such early theories. More generally, "action at a distance" describes the failure of early atomistic and mechanistic theories which sought to reduce all physical interaction to collision. The exploration and resolution of this problematic phenomenon led to significant developments in physics, from the concept of a field, to descriptions of quantum entanglement and the mediator particles of the Standard Model. Electrici ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]