Toponogov's Theorem
   HOME
*





Toponogov's Theorem
In the mathematical field of Riemannian geometry, Toponogov's theorem (named after Victor Andreevich Toponogov) is a triangle comparison theorem. It is one of a family of comparison theorems that quantify the assertion that a pair of geodesics emanating from a point ''p'' spread apart more slowly in a region of high curvature than they would in a region of low curvature. Let ''M'' be an ''m''-dimensional Riemannian manifold with sectional curvature ''K'' satisfying K\ge \delta\,. Let ''pqr'' be a geodesic triangle, i.e. a triangle whose sides are geodesics, in ''M'', such that the geodesic ''pq'' is minimal and if δ > ''0'', the length of the side ''pr'' is less than \pi / \sqrt \delta. Let ''p''′''q''′''r''′ be a geodesic triangle in the model space ''M''δ, i.e. the simply connected space of constant curvature δ, such that the lengths of sides ''p′q′'' and ''p′r′'' are equal to that of ''pq'' and ''pr'' respectively and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions. Riemannian geometry originated with the vision of Bernhard Riemann expressed in his inaugural lecture "''Ueber die Hypothesen, welche der Geometrie zu Grunde liegen''" ("On the Hypotheses on which Geometry is Based.") It is a very broad and abstract generalization of the differential geometry of surfaces in R3. Development of Riemannian geometry resulted in synthesis of diverse results concerning the geometry of surfaces and the behavior of geodesics on them, with techniques that can be applied to the study of differentiable manifolds of higher dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Victor Andreevich Toponogov
Victor Andreevich Toponogov (russian: Ви́ктор Андре́евич Топоно́гов; March 6, 1930 – November 21, 2004) was an outstanding Russian mathematician, noted for his contributions to differential geometry and so-called Riemannian geometry "in the large". Biography After finishing secondary school in 1948, Toponogov entered the department of Mechanics and Mathematics at Tomsk State University, graduated with honours in 1953, and continued as a graduate student there until 1956. He moved to an institution in Novosibirsk in 1956 and lived in that city for the rest of his career. Since the institution at Novosibirsk had not yet been fully credentialed, he had defended his Ph.D. thesis at Moscow State University in 1958, on a subject in Riemann spaces. Novosibirsk State University was established in 1959. In 1961 Toponogov became a professor at a newly created Institute of Mathematics and Computing in Novosibirsk affiliated with the state university. Topon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comparison Theorem
In mathematics, comparison theorems are theorems whose statement involves comparisons between various mathematical objects of the same type, and often occur in fields such as calculus, differential equations and Riemannian geometry. Differential equations In the theory of differential equations, comparison theorems assert particular properties of solutions of a differential equation (or of a system thereof), provided that an auxiliary equation/inequality (or a system thereof) possesses a certain property. *Chaplygin inequality *Grönwall's inequality, and its various generalizations, provides a comparison principle for the solutions of first-order ordinary differential equations. *Sturm comparison theorem *Aronson and Weinberger used a comparison theorem to characterize solutions to Fisher's equation, a reaction--diffusion equation. * Hille-Wintner comparison theorem Riemannian geometry In Riemannian geometry, it is a traditional name for a number of theorems that compare vario ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Riemannian Manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ''g''''p'' on the tangent space ''T''''p''''M'' at each point ''p''. The family ''g''''p'' of inner products is called a metric tensor, Riemannian metric (or Riemannian metric tensor). Riemannian geometry is the study of Riemannian manifolds. A common convention is to take ''g'' to be Smoothness, smooth, which means that for any smooth coordinate chart on ''M'', the ''n''2 functions :g\left(\frac,\frac\right):U\to\mathbb are smooth functions. These functions are commonly designated as g_. With further restrictions on the g_, one could also consider Lipschitz continuity, Lipschitz Riemannian metrics or Measurable function, measurable Riemannian metrics, among many other possibilities. A Riemannian metric (tensor) makes it possible to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sectional Curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a point ''p'' of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σ''p'' as a tangent plane at ''p'', obtained from geodesics which start at ''p'' in the directions of σ''p'' (in other words, the image of σ''p'' under the exponential map at ''p''). The sectional curvature is a real-valued function on the 2-Grassmannian fiber bundle, bundle over the manifold. The sectional curvature determines the Riemann curvature tensor, curvature tensor completely. Definition Given a Riemannian manifold and two linearly independent tangent vectors at the same point, ''u'' and ''v'', we can define :K(u,v)= Here ''R'' is the Riemann curvature tensor, defined here by the convention R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geodesic Triangle
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line". The noun ''geodesic'' and the adjective ''geodetic'' come from ''geodesy'', the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry. In the original sense, a geodesic was the shortest route between two points on the Earth's Planetary surface, surface. For a spherical Earth, it is a line segment, segment of a great circle (see also great-circle distance). The term has since been generalized to more abstract mathematical spaces; for example, in graph theory, one might consider a Distance (graph theory), geodesic between two vertex (graph theory), vertices/nodes of a Graph (discrete mathematics), graph. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simply Connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, S^1 and D^2 denotes the unit circle and closed unit disk in the Euclidean plane respectively. An equivalent formulation is this: X is simply connected if and only if it is path-connected, and whenev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constant Curvature
In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvature is said to be constant if it has the same value at every point and for every two-dimensional tangent plane at that point. For example, a sphere is a surface of constant positive curvature. Classification The Riemannian manifolds of constant curvature can be classified into the following three cases: * elliptic geometry – constant positive sectional curvature * Euclidean geometry – constant vanishing sectional curvature * hyperbolic geometry – constant negative sectional curvature. Properties * Every space of constant curvature is locally symmetric, i.e. its curvature tensor is parallel \nabla \mathrm=0. * Every space of constant curvature is locally maximally symmetric, i.e. it has \frac n (n+1) number of local isometries, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rauch Comparison Theorem
In Riemannian geometry, the Rauch comparison theorem, named after Harry Rauch, who proved it in 1951, is a fundamental result which relates the sectional curvature of a Riemannian manifold to the rate at which geodesics spread apart. Intuitively, it states that for positive curvature, geodesics tend to converge, while for negative curvature, geodesics tend to spread. The statement of the theorem involves two Riemannian manifolds, and allows to compare the infinitesimal rate at which geodesics spread apart in the two manifolds, provided that their curvature can be compared. Most of the time, one of the two manifolds is a "comparison model", generally a manifold with constant curvature , and the second one is the manifold under study : a bound (either lower or upper) on its sectional curvature is then needed in order to apply Rauch comparison theorem. Statement Let M, \widetilde be Riemannian manifolds, on which are drawn unit speed geodesic segments \gamma : , T\to M and \widetild ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Riemannian Geometry
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]