In
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to poin ...
, the Rauch comparison theorem, named after
Harry Rauch
Harry Ernest Rauch (November 9, 1925 – June 18, 1979) was an American mathematician, who worked on complex analysis and differential geometry. He was born in Trenton, New Jersey, and died in White Plains, New York.
Rauch earned his PhD i ...
, who proved it in 1951, is a fundamental result which relates the
sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a poi ...
of a
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
to the rate at which
geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s spread apart. Intuitively, it states that for positive curvature, geodesics tend to converge, while for negative curvature, geodesics tend to spread.
The statement of the theorem involves two Riemannian manifolds, and allows to compare the infinitesimal rate at which geodesics spread apart in the two manifolds, provided that their curvature can be compared. Most of the time, one of the two manifolds is a "comparison model", generally a manifold with
constant curvature
In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvature i ...
, and the second one is the manifold under study : a bound (either lower or upper) on its
sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a poi ...
is then needed in order to apply Rauch comparison theorem.
Statement
Let
be Riemannian manifolds, on which are drawn unit speed
geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
segments
and
. Assume that
has no
conjugate points
In differential geometry, conjugate points or focal points are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoi ...
along
, and let
be two normal
Jacobi field In Riemannian geometry, a Jacobi field is a vector field along a geodesic \gamma in a Riemannian manifold describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic for ...
s along
and
such that :
*
and
*
.
If the sectional curvature of every 2-plane
containing
is less or equal than the sectional curvature of every 2-plane
containing
, then
for all