Tololo-1247-232
   HOME
*



picture info

Tololo-1247-232
Tololo 1247-232 (Tol 1247 or T1247) is a small galaxy at a distance of (redshift z=0.0480). It is situated in the southern equatorial constellation of Hydra. Visually, Tol 1247 appears to be an irregular or possibly a barred spiral galaxy. Tol 1247 is named after the surveys that were carried at the Cerro Tololo Inter-American Observatory (CTIO), the first of which was in 1976. It is one of nine galaxies in the local universe known to emit Lyman continuum photons. Background Tol 1247-232 (T1247) was first described in 1985. It was observed in the infrared using the Cerro Tololo Inter-American Observatory (CTIO) 4m telescope, as part of a study of regions of intense star formation. Six years later, T1247 was identified as an HII galaxy in the paper 'A spectrophotometric catalogue of HII galaxies', a study of 425 emission-line galaxies. T1247 has also been classified as a starburst galaxy, a blue compact dwarf and a Wolf–Rayet galaxy. Lyman continuum leakage T1247 is one of n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reionization
In the fields of Big Bang theory and cosmology, reionization is the process that caused matter in the universe to reionize after the lapse of the " dark ages". Reionization is the second of two major phase transitions of gas in the universe (the first is recombination). While the majority of baryonic matter in the universe is in the form of hydrogen and helium, reionization usually refers strictly to the reionization of hydrogen, the element. It is believed that the primordial helium also experienced the same phase of reionization changes, but at different points in the history of the universe. This is usually referred to as helium reionization. Background The first phase change of hydrogen in the universe was recombination, which occurred at a redshift ''z'' = 1089 (379,000 years after the Big Bang), due to the cooling of the universe to the point where the rate of recombination of electrons and protons to form neutral hydrogen was higher than the reionizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lyman Continuum Photons
Lyman continuum photons (abbrev. LyC), shortened to Ly continuum photons or Lyc photons, are the photons emitted from stars at photon energies above the Lyman limit. Hydrogen is ionized by absorbing LyC. Working from Victor Schumann's discovery of ultraviolet light, from 1906 to 1914, Theodore Lyman observed that atomic hydrogen absorbs light only at specific frequencies (or wavelengths) and the Lyman series is thus named after him. All the wavelengths in the Lyman series are in the ultraviolet band. This quantized absorption behavior occurs only up to an energy limit, known as the ionization energy. In the case of neutral atomic hydrogen, the minimum ionization energy is equal to the Lyman limit, where the photon has enough energy to completely ionize the atom, resulting in a free proton and a free electron. Above this energy (below this wavelength), ''all'' wavelengths of light may be absorbed. This forms a continuum in the energy spectrum; the spectrum is continuous rather than ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hubble Space Telescope
The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most versatile, renowned both as a vital research tool and as a public relations boon for astronomy. The Hubble telescope is named after astronomer Edwin Hubble and is one of NASA's Great Observatories. The Space Telescope Science Institute (STScI) selects Hubble's targets and processes the resulting data, while the Goddard Space Flight Center (GSFC) controls the spacecraft. Hubble features a mirror, and its five main instruments observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. Hubble's orbit outside the distortion of Earth's atmosphere allows it to capture extremely high-resolution images with substantially lower background light than ground-based telescopes. It has recorded some of the most detaile ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Far Ultraviolet Spectroscopic Explorer
Far Ultraviolet Spectroscopic Explorer (FUSE, Explorer 77, and MIDEX-0) represented the next generation, high-orbit, ultraviolet space observatory covering the wavelength range of 90.5–119.5 nanometre (nm) of the NASA operated by the Johns Hopkins University Applied Physics Laboratory. FUSE was launched on a Delta II launch vehicle on 24 June 1999, at 15:44:00 UTC, as a part of NASA's Origins Program. FUSE detected light in the far ultraviolet portion of the electromagnetic spectrum, which is mostly unobservable by other telescopes. Its primary mission was to characterize universal deuterium in an effort to learn about the stellar processing times of deuterium left over from the Big Bang. FUSE resides in a low Earth orbit, approximately in altitude, with an inclination of 24.98° and a 99.80 minutes orbital period. Its Explorer program designation is Explorer 77. Mission The primary objective of FUSE was to use high-resolution spectroscopy at far ultraviolet waveleng ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Precision Array For Probing The Epoch Of Reionization
The Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) is a radio interferometer funded by the National Science Foundation to detect 21 cm hydrogen (HI) fluctuations occurring when the first galaxies ionized intergalactic gas at around 500 Million years after the Big Bang. PAPER is a focused experiment aimed toward making the first statistical detection of the 21 cm reionization signal. Given the stringent dynamic range requirements for detecting reionization in the face of foregrounds that are five orders of magnitude brighter, the PAPER project is taking a carefully staged engineering approach, optimizing each component in the array to mitigate, at the outset, any potentially debilitating problems in subsequent data calibration and analysis. This staged approach addresses the observational challenges that arise from very-wide-field, high-dynamic-range imaging over wide bandwidths in the presence of transient terrestrial interference. PAPE ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lyman Series
In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from ''n'' ≥ 2 to ''n'' = 1 (where ''n'' is the principal quantum number), the lowest energy level of the electron. The transitions are named sequentially by Greek letters: from ''n'' = 2 to ''n'' = 1 is called Lyman-alpha, 3 to 1 is Lyman-beta, 4 to 1 is Lyman-gamma, and so on. The series is named after its discoverer, Theodore Lyman. The greater the difference in the principal quantum numbers, the higher the energy of the electromagnetic emission. History The first line in the spectrum of the Lyman series was discovered in 1906 by Harvard physicist Theodore Lyman, who was studying the ultraviolet spectrum of electrically excited hydrogen gas. The rest of the lines of the spectrum (all in the ultraviolet) were discovered by Lyman from 1906-1914. The spectrum of radiation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lyman-alpha Forest
The Lyman-alpha line, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an ''n'' = 2 orbital to the ground state (''n'' = 1), where ''n'' is the principal quantum number. In hydrogen, its wavelength of 1215.67 angstroms ( or ), corresponding to a frequency of about , places Lyman-alpha in the ultraviolet (UV) part of the electromagnetic spectrum. More specifically, Ly-α lies in vacuum UV (VUV), characterized by a strong absorption in the air. Fine structure The Lyman-alpha doublet. Because of the spin–orbit interaction, the Lyman-alpha line splits into a fine-structure doublet with the wavelengths of 1215.668 and 1215.674 angstroms. These components are called Ly-α3/2 and Ly-α1/2, respectively. The eigenstates of the perturbed Hamiltonian are labeled by the ''total'' angular momentum ''j'' of the electron, not just the o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Haro 11
Haro 11 (H11) is a small galaxy at a distance of (redshift z=0.020598). It is situated in the southern constellation of Sculptor. Visually, it appears to be an irregular galaxy, as the ESO image to the right shows. H11 is named after Guillermo Haro, a Mexican astronomer who first included it in a study published in 1956 about blue galaxies. H11 is a starburst galaxy that has 'super star clusters' within it and is one of nine galaxies in the local universe known to emit Lyman continuum photons (LyC). Background Guillermo Haro first described H11 in a study published in 1956 listing 44 galaxies that were blue. The observations had been carried out at the Tonantzintla Observatory in Mexico using the Schmidt Camera. Since then, The NASA/IPAC Extragalactic Database (NED) gives 123 citations for H11. The first study showing the possible escape of Lyman continuum photons was published in 2006, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE). The study's aim was to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pea Galaxy
A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS). "Pea" galaxies were first discovered in 2007 by the volunteer citizen scientists within the forum section of the online astronomy project Galaxy Zoo (GZ), part of the Zooniverse web portal. Description The Pea galaxies, also known as Green Peas (GPs), are compact oxygen-rich emission line galaxies that were discovered at redshift between ''z'' = 0.112 and 0.360. These low-mass galaxies have an upper size limit generally no bigger than across, and typically they reside in environments less than two-thirds the density of normal galaxy environments. An average GP has a redshift of ''z'' = 0.258, a mass of ~3,200 million (~3,200 million solar masses), a star formation rate of /yr (~ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cosmic Origins Spectrograph
The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado. COS is installed into the axial instrument bay previously occupied by the Corrective Optics Space Telescope Axial Replacement (COSTAR) instrument, and is intended to complement the Space Telescope Imaging Spectrograph (STIS) that was repaired during the same mission. While STIS operate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Active Galactic Nuclei
An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not produced by stars. Such excess non-stellar emission has been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an "active galaxy". The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy. Active galactic nuclei are the most luminous persistent sources of electromagnetic radiation in the universe, and as such can be used as a means of discovering distant objects; their evolution as a function of cosmic time also puts constraints on models of the cosmos. The observed characteristics of an AGN depend on several properties such as the mass of the central black hole, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]