HOME
*





Reionization
In the fields of Big Bang theory and cosmology, reionization is the process that caused matter in the universe to reionize after the lapse of the " dark ages". Reionization is the second of two major phase transitions of gas in the universe (the first is recombination). While the majority of baryonic matter in the universe is in the form of hydrogen and helium, reionization usually refers strictly to the reionization of hydrogen, the element. It is believed that the primordial helium also experienced the same phase of reionization changes, but at different points in the history of the universe. This is usually referred to as helium reionization. Background The first phase change of hydrogen in the universe was recombination, which occurred at a redshift ''z'' = 1089 (379,000 years after the Big Bang), due to the cooling of the universe to the point where the rate of recombination of electrons and protons to form neutral hydrogen was higher than the reionizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Timeline Of The Big Bang
The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with an uncertainty of around 21 million years at the 68% confidence level. The Planck Collaboration in 2015 published the estimate of 13.799 ± 0.021 billion years ago (68% confidence interval). See PDF: page 32, Table 4, Age/Gyr, last column. Outline Chronology in five stages For the purposes of this summary, it is convenient to divide the chronology of the universe since it originated, into five parts. It is generally considered meaningless or unclear whether time existed before this chronology: The very early universe The first picosecond (10−12) of cosmic time. It includes the Planck epoch, during which currently established laws of physics may not apply; the emergence in stages of the four known fundamental interactions or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quasar
A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up because of friction and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosity, luminosities thousands of times greater than that of a galaxy such as the Milky Way. Usually, quasars are categorized as a subclass of the more general category of AGN. The redshifts of quasars are of Expansion of the universe, cosmological origin. The term originated as a Contraction (grammar), contraction of "quasi-stellar ''[star-like]'' radio source"—because quasars were first identified during the 1950s as sour ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum ( spin) of a half-integer value, expressed in units of the reduced Planck constant, . Being fermions, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big Bang
The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the Universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang. Crucially, these models are compatible with the Hubble–Lemaître law—the observation that the farther away a galaxy is, the faster it is mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma (physics)
Plasma () 1, where \nu_ is the electron gyrofrequency and \nu_ is the electron collision rate. It is often the case that the electrons are magnetized while the ions are not. Magnetized plasmas are ''anisotropic'', meaning that their properties in the direction parallel to the magnetic field are different from those perpendicular to it. While electric fields in plasmas are usually small due to the plasma high conductivity, the electric field associated with a plasma moving with velocity \mathbf in the magnetic field \mathbf is given by the usual Lorentz force, Lorentz formula \mathbf = -\mathbf\times\mathbf, and is not affected by Debye shielding. Mathematical descriptions To completely describe the state of a plasma, all of the particle locations and velocities that describe the electromagnetic field in the plasma region would need to be written down. However, it is generally not practical or necessary to keep track of all the particles in a plasma. Therefore, plasma physicist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sloan Digital Sky Survey
The Sloan Digital Sky Survey or SDSS is a major multi-spectral imaging and spectroscopic redshift survey using a dedicated 2.5-m wide-angle optical telescope at Apache Point Observatory in New Mexico, United States. The project began in 2000 and was named after the Alfred P. Sloan Foundation, which contributed significant funding. A consortium of the University of Washington and Princeton University was established to conduct a redshift survey. The Astrophysical Research Consortium (ARC) was established in 1984 with the additional participation of New Mexico State University and Washington State University to manage activities at Apache Point. In 1991 the Sloan Foundation granted the ARC funding for survey efforts and the construction of equipment to carry out the work.. Background At the time of its design, the SDSS was a pioneering combination of novel instrumentation as well as data reduction and storage techniques that drove major advances in astronomical observations, di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lyman-alpha Forest
The Lyman-alpha line, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an ''n'' = 2 orbital to the ground state (''n'' = 1), where ''n'' is the principal quantum number. In hydrogen, its wavelength of 1215.67 angstroms ( or ), corresponding to a frequency of about , places Lyman-alpha in the ultraviolet (UV) part of the electromagnetic spectrum. More specifically, Ly-α lies in vacuum UV (VUV), characterized by a strong absorption in the air. Fine structure The Lyman-alpha doublet. Because of the spin–orbit interaction, the Lyman-alpha line splits into a fine-structure doublet with the wavelengths of 1215.668 and 1215.674 angstroms. These components are called Ly-α3/2 and Ly-α1/2, respectively. The eigenstates of the perturbed Hamiltonian are labeled by the ''total'' angular momentum ''j'' of the electron, not just the o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Expansion Of Space
The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not expand "into" anything and does not require space to exist "outside" it. This expansion involves neither space nor objects in space "moving" in a traditional sense, but rather it is the metric (which governs the size and geometry of spacetime itself) that changes in scale. As the spatial part of the universe's spacetime metric increases in scale, objects become more distant from one another at ever-increasing speeds. To any observer in the universe, it appears that all of space is expanding, and that all but the nearest galaxies (which are bound by gravity) recede at speeds that are proportional to their distance from the observer. While objects within space cannot travel faster than light, this limitation does not apply to the effects of ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absorption (electromagnetic Radiation)
In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy — and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). A notable effect is attenuation, or the gradual reduction of the intensity of light waves as they propagate through a medium. Although the absorption of waves does not usually depend on their intensity (linear absorption), in certain conditions (optics) the medium's transparency changes by a factor that varies as a function of wave intensity, and saturable absorption (or nonlinear absorption) occurs. Quantifying absorption Many approaches can potentially quantify radiation absorption, with key examples following. * The absorption coefficient along with some closely related derived quantities * The attenuation coefficient (NB used infrequently with meaning synonymous with "absorption coefficient") * The Molar attenuation coefficient (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intergalactic Medium
Intergalactic may refer to: * "Intergalactic" (song), a song by the Beastie Boys * ''Intergalactic'' (TV series), a 2021 UK science fiction TV series * Intergalactic space * Intergalactic travel, travel between galaxies in science fiction and speculation See also * *Interstellar (other) *Interplanetary (other) *Entergalactic (other) Entergalactic may refer to: * ''Entergalactic'' (album), a 2022 album by Kid Cudi * ''Entergalactic'' (TV special), a TV special on Netflix ** ''Entergalactic (Original Score)'', a film score composed by Dot da Genius and Plain Pat * "Enter Gala ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scattering Cross-section
In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation (e.g. a particle beam, sound wave, light, or an X-ray) intersects a localized phenomenon (e.g. a particle or density fluctuation). For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted ( sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process. In classical physics, this probability often converges to a deterministic proportion of excitation energy involved in the process, so that, for example, with light scattering off of a particle, the cross section specifies the amount of optical power scattered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]