Tits Alternative
   HOME
*





Tits Alternative
In mathematics, the Tits alternative, named for Jacques Tits, is an important theorem about the structure of finitely generated linear groups. Statement The theorem, proven by Tits, is stated as follows. Consequences A linear group is not amenable if and only if it contains a non-abelian free group (thus the von Neumann conjecture, while not true in general, holds for linear groups). The Tits alternative is an important ingredient in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result for linear groups (it reduces it to the case of solvable groups, which can be dealt with by elementary means). Generalizations In geometric group theory, a group ''G'' is said to satisfy the Tits alternative if for every subgroup ''H'' of ''G'' either ''H'' is virtually solvable or ''H'' contains a nonabelian free subgroup (in some versions of the definition this condition is only required to be satisfied for all finitely g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Group Theory
In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also central to public key cryptography. The early history of group theory dates from the 19th century. One ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ping-pong Lemma
In mathematics, the ping-pong lemma, or table-tennis lemma, is any of several mathematical statements that ensure that several elements in a group (mathematics), group group action, acting on a set freely Generating set of a group, generates a free group, free subgroup of that group. History The ping-pong argument goes back to the late 19th century and is commonly attributed to Felix Klein who used it to study subgroups of Kleinian groups, that is, of discrete groups of isometry, isometries of the hyperbolic 3-space or, equivalently Möbius transformations of the Riemann sphere. The ping-pong lemma was a key tool used by Jacques Tits in his 1972 paperJ. Tits''Free subgroups in linear groups.''Journal of Algebra, vol. 20 (1972), pp. 250–270 containing the mathematical proof, proof of a famous result now known as the Tits alternative. The result states that a finitely generated group, finitely generated linear group is either virtually solvable group, solvable or contains a free sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zariski Topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring (called the spectrum of the ring) a topological space. The Zariski topology allows tools from topology to be used to study algebraic varieties, even when the underlying field is not a topological field. This is one of the basic ideas of scheme theory, which allows one to build general algebraic varieties by gluing together affine varieties in a way similar to that in manifold theory, where manifolds are built by gluing together charts, which are open subsets of real affine spaces. The Zariski topology of an algebraic variety is the topology whose closed sets are the algebraic subsets of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thompson Groups
In mathematics, the Thompson groups (also called Thompson's groups, vagabond groups or chameleon groups) are three groups, commonly denoted F \subseteq T \subseteq V, that were introduced by Richard Thompson in some unpublished handwritten notes in 1965 as a possible counterexample to the von Neumann conjecture. Of the three, ''F'' is the most widely studied, and is sometimes referred to as the Thompson group or Thompson's group. The Thompson groups, and ''F'' in particular, have a collection of unusual properties that have made them counterexamples to many general conjectures in group theory. All three Thompson groups are infinite but finitely presented. The groups ''T'' and ''V'' are (rare) examples of infinite but finitely-presented simple groups. The group ''F'' is not simple but its derived subgroup 'F'',''F''is and the quotient of ''F'' by its derived subgroup is the free abelian group of rank 2. ''F'' is totally ordered, has exponential growth, and does not contain a subg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grigorchuk Group
In the mathematical area of group theory, the Grigorchuk group or the first Grigorchuk group is a finitely generated group constructed by Rostislav Grigorchuk that provided the first example of a finitely generated group of intermediate (that is, faster than polynomial but slower than exponential) growth. The group was originally constructed by Grigorchuk in a 1980 paper and he then proved in a 1984 paper that this group has intermediate growth, thus providing an answer to an important open problem posed by John Milnor in 1968. The Grigorchuk group remains a key object of study in geometric group theory, particularly in the study of the so-called branch groups and automata groups, and it has important connections with the theory of iterated monodromy groups.Volodymyr Nekrashevych''Self-similar groups.''Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005. . History and significance The growth of a finitely generated group measures the asympto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, however, in the Italian school of algebraic geometry, and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one varieties are classified by only the topological genus, but dimension two, the difference between the arithmetic genus p_a and the geometric genus p_g turns to be important because we cannot distinguish birationally only the topological genus. Then we introduce the irregularity for the classification of them. A summary of the results (in det ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rational Mapping
In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Definition Formal definition Formally, a rational map f \colon V \to W between two varieties is an equivalence class of pairs (f_U, U) in which f_U is a morphism of varieties from a non-empty open set U\subset V to W, and two such pairs (f_U, U) and (_, U') are considered equivalent if f_U and _ coincide on the intersection U \cap U' (this is, in particular, vacuously true if the intersection is empty, but since V is assumed irreducible, this is impossible). The proof that this defines an equivalence relation relies on the following lemma: * If two morphisms of varieties are equal on some non-empty open set, then they are equal. f is said to be birational if there exists a rational map g \colon W \to V which is its inverse, where the composition is taken i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mladen Bestvina
Mladen Bestvina (born 1959) is a Croatian-American mathematician working in the area of geometric group theory. He is a Distinguished Professor in the Department of Mathematics at the University of Utah. Biographical info Mladen Bestvina is a three-time medalist at the International Mathematical Olympiad (two silver medals in 1976 and 1978 and a bronze medal in 1977). He received a B. Sc. in 1982 from the University of Zagreb. He obtained a PhD in Mathematics in 1984 at the University of Tennessee under the direction of John Walsh. He was a visiting scholar at the Institute for Advanced Study in 1987-88 and again in 1990–91. Bestvina had been a faculty member at UCLA, and joined the faculty in the Department of Mathematics at the University of Utah in 1993.Mladen Bestvina: Distinguished Professor
''Afte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Out(Fn)
In mathematics, Out(''Fn'') is the outer automorphism group of a free group on ''n'' generators. These groups play an important role in geometric group theory. Outer space Out(''Fn'') acts geometrically on a cell complex known as Culler–Vogtmann Outer space, which can be thought of as the Teichmüller space for a bouquet of circles. Definition A point of the outer space is essentially an \R-graph ''X'' homotopy equivalent to a bouquet of ''n'' circles together with a certain choice of a free homotopy class of a homotopy equivalence from ''X'' to the bouquet of ''n'' circles. An \R-graph is just a weighted graph with weights in \R. The sum of all weights should be 1 and all weights should be positive. To avoid ambiguity (and to get a finite dimensional space) it is furthermore required that the valency of each vertex should be at least 3. A more descriptive view avoiding the homotopy equivalence ''f'' is the following. We may fix an identification of the fundamental gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]