Tensor Rank Decomposition
   HOME
*





Tensor Rank Decomposition
In multilinear algebra, the tensor rank decomposition or the rank-R decomposition of a tensor is the decomposition of a tensor in terms of a sum of minimum R rank-1 tensors. This is an open problem. Canonical polyadic decomposition (CPD) is a variant of the rank decomposition which computes the best fitting K rank-1 terms for a user specified K. The CP decomposition has found some applications in linguistics and chemometrics. The CP rank was introduced by Frank Lauren Hitchcock in 1927 and later rediscovered several times, notably in psychometrics. The CP decomposition is referred to as CANDECOMP, PARAFAC, or CANDECOMP/PARAFAC (CP). Another popular generalization of the matrix SVD known as the higher-order singular value decomposition computes orthonormal mode matrices and has found applications in econometrics, signal processing, computer vision, computer graphics, psychometrics. Notation A scalar variable is denoted by lower case italic letters, a and an upper bound scalar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multilinear Algebra
Multilinear algebra is a subfield of mathematics that extends the methods of linear algebra. Just as linear algebra is built on the concept of a vector and develops the theory of vector spaces, multilinear algebra builds on the concepts of ''p''-vectors and multivectors with Grassmann algebras. Origin In a vector space of dimension ''n'', normally only vectors are used. However, according to Hermann Grassmann and others, this presumption misses the complexity of considering the structures of pairs, triplets, and general multi-vectors. With several combinatorial possibilities, the space of multi-vectors has 2''n'' dimensions. The abstract formulation of the determinant is the most immediate application. Multilinear algebra also has applications in the mechanical study of material response to stress and strain with various moduli of elasticity. This practical reference led to the use of the word tensor, to describe the elements of the multilinear space. The extra structure in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ''F''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L have the same zero eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computer-assisted Proof
A computer-assisted proof is a mathematical proof that has been at least partially generated by computer. Most computer-aided proofs to date have been implementations of large proofs-by-exhaustion of a mathematical theorem. The idea is to use a computer program to perform lengthy computations, and to provide a proof that the result of these computations implies the given theorem. In 1976, the four color theorem was the first major theorem to be verified using a computer program. Attempts have also been made in the area of artificial intelligence research to create smaller, explicit, new proofs of mathematical theorems from the bottom up using automated reasoning techniques such as heuristic search. Such automated theorem provers have proved a number of new results and found new proofs for known theorems. Additionally, interactive proof assistants allow mathematicians to develop human-readable proofs which are nonetheless formally verified for correctness. Since these proofs ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

W State
The W state is an entangled quantum state of three qubits which in the bra-ket notation has the following shape : , \mathrm\rangle = \frac(, 001\rangle + , 010\rangle + , 100\rangle) and which is remarkable for representing a specific type of multipartite entanglement and for occurring in several applications in quantum information theory. Particles prepared in this state reproduce the properties of Bell's theorem, which states that no classical theory of local hidden variables can produce the predictions of quantum mechanics. The state is named after Wolfgang Dür, who first reported the state together with Guifré Vidal Guifré Vidal is a Spanish physicist who is working on quantum many-body physics using analytical and numerical techniques. In particular, he is one of the leading experts of tensor network state implementations such as time-evolving block deci ..., and Ignacio Cirac in 2002. Properties The W state is the representative of one of the two non-bisepara ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SIAM Journal On Scientific Computing
The ''SIAM Journal on Scientific Computing'' (''SISC''), formerly ''SIAM Journal on Scientific & Statistical Computing'', is a scientific journal focusing on the research articles on numerical methods and techniques for scientific computation. It is published by the Society for Industrial and Applied Mathematics (SIAM). Jan S. Hesthaven is the current editor-in-chief, assuming the role in January 2016. The impact factor is currently around 2. This journal papers address computational issues relevant to solution of scientific or engineering problems and include computational results demonstrating the effectiveness of proposed techniques. They are classified into three categories: 1) Methods and Algorithms for Scientific Computing. 2) Computational Methods in Science and Engineering. 3) Software and High-Performance Computing. The first type papers focus on theoretical analysis, provided that relevance to applications in science and engineering is demonstrated. They are supposed to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix Multiplication Algorithm
Because matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network). Directly applying the mathematical definition of matrix multiplication gives an algorithm that takes time on the order of field operations to multiply two matrices over that field ( in big O notation). Better asymptotic bounds on the time required to multiply matrices have been known since the Strassen's algorithm in the 1960s, but the optimal time (that is, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SIAM Journal On Matrix Analysis And Applications
The ''SIAM Journal on Matrix Analysis and Applications'' (until 1989: ''SIAM Journal on Algebraic and Discrete Methods'') is a peer-reviewed scientific journal covering matrix analysis and its applications. The relevant applications include signal processing, systems and control theory, statistics, Markov chains, mathematical biology, graph theory, and data science. The journal is published by the Society for Industrial and Applied Mathematics. The founding editor-in-chief was Gene H. Golub, who established the journal in 1980. The current editor is Michele Benzi (Scuola Normale Superiore). See also *Michele Benzi Michele Benzi (born 1962 in Bologna) is an Italian mathematician who works as a full professor in the Scuola Normale Superiore in Pisa. He is known for his contributions to numerical linear algebra and its applications, especially to the solu ... External links * Mathematics journals Publications established in 1980 English-language journals Quarterly jou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, and Nigel Hitchin. Currently, the managing editor of Mathematische Annalen is Thomas Schick. Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947 the journal briefly ceased publication. References External links''Mathematische Annalen''homepage at Springer''Mathematische Annalen''archive (1869†...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Almost Everywhere
In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of ''almost surely'' in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull. In cases where the measure is not complete, it is sufficient that the set be contained within a set of measure zero. When discussing sets of real numbers, the Lebesgue measure is usually assumed unless otherwise stated. The term ''almost everywhere'' is abbreviated ''a.e.''; in older literature ''p.p.'' is used, to stand for the equivalent French language phrase ''presque partout''. A set with full measure is one whose complement i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Algebra And Its Applications
''Linear Algebra and its Applications'' is a biweekly peer-reviewed mathematics journal published by Elsevier and covering matrix theory and finite-dimensional linear algebra. History The journal was established in January 1968 with A.J. Hoffman, A.S. Householder, A.M. Ostrowski, H. Schneider, and O. Taussky Todd as founding editors-in-chief. The current editors-in-chief are Richard A. Brualdi (University of Wisconsin at Madison), Volker Mehrmann (Technische Universität Berlin), and Peter Semrl (University of Ljubljana). Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 1.401. References External links * {{Offic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volker Strassen
Volker Strassen (born April 29, 1936) is a German mathematician, a professor emeritus in the department of mathematics and statistics at the University of Konstanz. For important contributions to the analysis of algorithms he has received many awards, including the Cantor medal, the Konrad Zuse Medal, the Paris Kanellakis Award for work on randomized primality testing, the Knuth Prize for "seminal and influential contributions to the design and analysis of efficient algorithms." Biography Strassen was born on April 29, 1936, in Düsseldorf-Gerresheim.. After studying music, philosophy, physics, and mathematics at several German universities, he received his Ph.D. in mathematics in 1962 from the University of Göttingen under the supervision of . He then took a position in the department of statistics at the University of California, Berkeley while performing his habilitation at the University of Erlangen-Nuremberg, where Jacobs had since moved. In 1968, Strassen moved to the Ins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]