HOME
*





Tutte–Grothendieck Invariant
In mathematics, a Tutte–Grothendieck (TG) invariant is a type of graph invariant that satisfies a generalized deletion–contraction formula. Any evaluation of the Tutte polynomial would be an example of a TG invariant. Definition A graph function ''f'' is TG-invariant if: f(G) = \begin c^ & \text \\ xf(G/e) & \text e \text \\ yf(G \backslash e) & \text e \text \\ af(G/e) + bf(G \backslash e) & \text \end Above ''G'' / ''e'' denotes edge contraction whereas ''G'' \ ''e'' denotes deletion. The numbers ''c'', ''x'', ''y'', ''a'', ''b'' are parameters. Generalization to matroids The matroid function ''f'' is TG if: : \begin &f(M_1\oplus M_2) = f(M_1)f(M_2) \\ &f(M) = af(M/e) + b f(M \backslash e) \ \ \ \text e \text \end It can be shown that ''f'' is given by: : f(M) = a^b^ T(M; x/a, y/b) where ''E'' is the edge set of ''M''; ''r'' is the rank function; and : T(M; x, y) = \sum_ (x-1)^ (y-1)^ is the generalization of the Tutte polynomial to matroids. Grothendieck group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graph Invariant
Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties * Graph (topology), a topological space resembling a graph in the sense of discrete mathematics * Graph of a function * Graph of a relation * Graph paper * Chart, a means of representing data (also called a graph) Computing * Graph (abstract data type), an abstract data type representing relations or connections * graph (Unix), Unix command-line utility *Conceptual graph, a model for knowledge representation and reasoning Other uses * HMS ''Graph'', a submarine of the UK Royal Navy See also *Complex network *Graf *Graff (other) *Graph database *Grapheme, in linguistics *Graphemics *Graphic (other) *-graphy (suffix from the Greek for "describe," "write" or "draw") *List of information graphics software This is a list of software to create any kind of information graphics: * either includes the abil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deletion–contraction Formula
In graph theory, a deletion-contraction formula / recursion is any formula of the following recursive form: :f(G) = f(G \setminus e) + f(G / e). Here ''G'' is a graph, ''f'' is a function on graphs, ''e'' is any edge of ''G'', ''G'' \ ''e'' denotes edge deletion, and ''G'' / ''e'' denotes contraction. Tutte refers to such a function as a W-function. The formula is sometimes referred to as the fundamental reduction theorem. In this article we abbreviate to DC. R. M. Foster had already observed that the chromatic polynomial is one such function, and Tutte began to discover more, including a function ''f'' = ''t''(''G'') counting the number of spanning trees of a graph (also see Kirchhoff's theorem). It was later found that the flow polynomial is yet another; and soon Tutte discovered an entire class of functions called Tutte polynomials (originally referred to as dichromates) that satisfy DC. Examples Spanning trees The number of spanning trees t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tutte Polynomial
The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph G and contains information about how the graph is connected. It is denoted by T_G. The importance of this polynomial stems from the information it contains about G. Though originally studied in algebraic graph theory as a generalization of counting problems related to graph coloring and nowhere-zero flow, it contains several famous other specializations from other sciences such as the Jones polynomial from knot theory and the partition functions of the Potts model from statistical physics. It is also the source of several central computational problems in theoretical computer science. The Tutte polynomial has several equivalent definitions. It is equivalent to Whitney’s rank polynomial, Tutte’s own dichromatic polynomial and Fortuin–Kasteleyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Edge Contraction
In graph theory, an edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices that it previously joined. Edge contraction is a fundamental operation in the theory of graph minors. Vertex identification is a less restrictive form of this operation. Definition The edge contraction operation occurs relative to a particular edge, e. The edge e is removed and its two incident vertices, u and v, are merged into a new vertex w, where the edges incident to w each correspond to an edge incident to either u or v. More generally, the operation may be performed on a set of edges by contracting each edge (in any order). The resulting induced graph is sometimes written as G/e. (Contrast this with G \setminus e, which means removing the edge e.) As defined below, an edge contraction operation may result in a graph with multiple edges even if the original graph was a simple graph. However, some authors disallow the creation of multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck Group
In mathematics, the Grothendieck group, or group of differences, of a commutative monoid is a certain abelian group. This abelian group is constructed from in the most universal way, in the sense that any abelian group containing a homomorphic image of will also contain a homomorphic image of the Grothendieck group of . The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation. Grothendieck group of a commutative monoid Motivation Given a commutative monoid , "the most general" abelian group that arises from is to be constructed by introducing inverse elements to all elements of . Such an abelian group always exists; it is called the Grothendieck group of . It is character ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Roch Theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus ''g'', in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student . It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. Preliminary notions A Riemann surface X is a topological space that is locally homeomorphic to an open subset of \Complex, the set of complex numbers. In addition, the transition maps between these open subsets are required to be holomorphic. The latter condition allows one to transfer the notions and methods of complex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]