HOME
*



picture info

Truncated Tetrahedra
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length. A deeper truncation, removing a tetrahedron of half the original edge length from each vertex, is called rectification. The rectification of a tetrahedron produces an octahedron. A ''truncated tetrahedron'' is the Goldberg polyhedron containing triangular and hexagonal faces. A ''truncated tetrahedron'' can be called a cantic cube, with Coxeter diagram, , having half of the vertices of the cantellated cube (rhombicuboctahedron), . There are two dual positions of this construction, and combining them creates the uniform compound of two truncated tetrahedra. Area and volume The area ''A'' and the volume ''V'' of a truncated tetrahedron of edge length ''a'' are: :\begin A &= 7\sqrta^2 &&\approx ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated Tetrahedron
In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length. A deeper truncation, removing a tetrahedron of half the original edge length from each vertex, is called rectification. The rectification of a tetrahedron produces an octahedron. A ''truncated tetrahedron'' is the Goldberg polyhedron containing triangular and hexagonal faces. A ''truncated tetrahedron'' can be called a cantic cube, with Coxeter diagram, , having half of the vertices of the cantellated cube (rhombicuboctahedron), . There are two dual positions of this construction, and combining them creates the uniform compound of two truncated tetrahedra. Area and volume The area ''A'' and the volume ''V'' of a truncated tetrahedron of edge length ''a'' are: :\begin A &= 7\sqrta^2 &&\appro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Truncated Tetrahedron In Unit Cube
Truncation is the term used for limiting the number of digits right of the decimal point by discarding the least significant ones. Truncation may also refer to: Mathematics * Truncation (statistics) refers to measurements which have been cut off at some value * Truncation (numerical analysis) refers to truncating an infinite sum by a finite one * Truncation (geometry) is the removal of one or more parts, as for example in truncated cube * Propositional truncation, a type former which truncates a type down to a mere proposition Computer science * Data truncation, an event that occurs when a file or other data is stored in a location too small to accommodate its entire length * Truncate (SQL), a command in the SQL data manipulation language to quickly remove all data from a table Biology * Truncate, a leaf shape * Truncated protein, a protein shortened by a mutation which specifically induces premature termination of messenger RNA translation Other uses * Cheque truncation, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedron T01 Af36
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedron T01 Ae
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra and the only one that has fewer than 5 faces. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sphere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron Truncated 4a From Yellow Max
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions. Definition Convex polyhedra are well-defined, with several equivalent standard definitions. However, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of "polyhedron" have been given within particular contexts,. some more rigorous than others, and there is not universal agreement over which of these to choose. Some of these definitions exclude shapes that have often been counted as polyhedra (such as the self-crossing polyhedra) or include shapes that are often not considered as valid polyhedr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron Truncated 4a From Red Max
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions. Definition Convex polyhedra are well-defined, with several equivalent standard definitions. However, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of "polyhedron" have been given within particular contexts,. some more rigorous than others, and there is not universal agreement over which of these to choose. Some of these definitions exclude shapes that have often been counted as polyhedra (such as the self-crossing polyhedra) or include shapes that are often not considered as valid polyhedr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron Truncated 4a From Blue Max
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions. Definition Convex polyhedra are well-defined, with several equivalent standard definitions. However, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of "polyhedron" have been given within particular contexts,. some more rigorous than others, and there is not universal agreement over which of these to choose. Some of these definitions exclude shapes that have often been counted as polyhedra (such as the self-crossing polyhedra) or include shapes that are often not considered as valid polyhedr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyhedron Truncated 4a From Redyellow Max
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions. Definition Convex polyhedra are well-defined, with several equivalent standard definitions. However, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of "polyhedron" have been given within particular contexts,. some more rigorous than others, and there is not universal agreement over which of these to choose. Some of these definitions exclude shapes that have often been counted as polyhedra (such as the self-crossing polyhedra) or include shapes that are often not considered as valid polyhedr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truncated 16-cell
In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the ''truncated 16-cell''. Truncated tesseract The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra. Alternate names * Truncated tesseract (Norman W. Johnson) * Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) Construction The truncated tesseract may be constructed by truncating the vertices of the tesseract at 1/(\sqrt+2) of the edge length. A regular tetrahedron is formed at each truncated vertex. The Cartesian coordinates of the vertices of a truncated tesseract having edge length 2 is given by all permutations of: :\left(\pm1,\ \pm(1+\sqrt),\ \pm(1+\sqrt),\ \pm(1+\sqrt)\right) Projections In the truncated cube first parallel projection of the truncated tesseract into 3-dimensional space, the image is laid out ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compound Polyhedron
In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram. The outer vertices of a compound can be connected to form a convex polyhedron called its convex hull. A compound is a facetting of its convex hull. Another convex polyhedron is formed by the small central space common to all members of the compound. This polyhedron can be used as the core for a set of stellations. Regular compounds A regular polyhedral compound can be defined as a compound which, like a regular polyhedron, is vertex-transitive, edge-transitive, and face-transitive. Unlike the case of polyhedra, this is not equivalent to the symmetry group acting transitively on its flags; the compound of two tetrahedra is the only regular compound with that property. There are five regular compounds of polyhedra: Best known is the regular compound of two tetrahedra, often call ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dissection Problem
In geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another). It is usually required that the dissection use only a finite number of pieces. Additionally, to avoid set-theoretic issues related to the Banach–Tarski paradox and Tarski's circle-squaring problem, the pieces are typically required to be well-behaved. For instance, they may be restricted to being the closures of disjoint open sets. The Bolyai–Gerwien theorem states that any polygon may be dissected into any other polygon of the same area, using interior-disjoint polygonal pieces. It is not true, however, that any polyhedron has a dissection into any other polyhedron of the same volume using polyhedral pieces (see Dehn invariant). This process ''is'' possible, however, for any two honeycombs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bounding Box
In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. The terms "box" and "hyperrectangle" come from their usage in the Cartesian coordinate system, where they are indeed visualized as a rectangle (two-dimensional case), rectangular parallelepiped (three-dimensional case), etc. In the two-dimensional case it is called the minimum bounding rectangle. Axis-aligned minimum bounding box The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]