Transverse-field Ising Model
The transverse field Ising model is a quantum version of the classical Ising model. It features a lattice with nearest neighbour interactions determined by the alignment or anti-alignment of spin projections along the z axis, as well as an external magnetic field perpendicular to the z axis (without loss of generality, along the x axis) which creates an energetic bias for one x-axis spin direction over the other. An important feature of this setup is that, in a quantum sense, the spin projection along the x axis and the spin projection along the z axis are not commuting observable quantities. That is, they cannot both be observed simultaneously. This means classical statistical mechanics cannot describe this model, and a quantum treatment is needed. Specifically, the model has the following quantum Hamiltonian (quantum mechanics), Hamiltonian: :H = -J\left(\sum_ Z_i Z_ + g \sum_j X_j \right) Here, the subscripts refer to lattice sites, and the sum \sum_ is done over pairs of ne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ising Model
The Ising model (or Lenz–Ising model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical models in physics, mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent Nuclear magnetic moment, magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1). The spins are arranged in a Graph (abstract data type), graph, usually a lattice (group), lattice (where the local structure repeats periodically in all directions), allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases.The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition. Though it is a highly simplified model of a magnetic material, the Ising model can sti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimal Model (physics)
In theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental p ..., a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra. Minimal models have been classified, giving rise to an ADE classification. Most minimal models have been solved, i.e. their 3-point structure constants have been computed analytically. The term minimal model can also refer to a rational CFT based on an algebra that is larger than the Virasoro algebra, such as a W-algebra. Relevant representations of the Virasoro algebra Representations In minimal models, the central charge of the Virasoro algebra takes values of the type : c_ = 1 - 6 \ . where p, q are coprime integers s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lattice Models
Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an ornamental pattern of crossing strips of pastry Companies * Lattice Engines, a technology company specializing in business applications for marketing and sales * Lattice Group, a former British gas transmission business * Lattice Semiconductor, a US-based integrated circuit manufacturer Science, technology, and mathematics Mathematics * Lattice (group), a repeating arrangement of points ** Lattice (discrete subgroup), a discrete subgroup of a topological group whose quotient carries an invariant finite Borel measure ** Lattice (module), a module over a ring that is embedded in a vector space over a field ** Lattice graph, a graph that can be drawn within a repeating arrangement of points ** Lattice-based cryptography, encryp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Clock Model
The quantum clock model is a quantum lattice model. It is a generalisation of the transverse-field Ising model . It is defined on a lattice with N states on each site. The Hamiltonian of this model is :H = -J \left( \sum_ (Z^\dagger_i Z_j + Z_i Z^\dagger_j ) + g \sum_j (X_j + X^\dagger_j) \right) Here, the subscripts refer to lattice sites, and the sum \sum_ is done over pairs of nearest neighbour sites i and j. The clock matrices X_j and Z_j are N \times N generalisations of the Pauli matrices satisfying : Z_j X_k = e^ X_k Z_j and X_j^N = Z_j^N = 1 where \delta_ is 1 if j and k are the same site and zero otherwise. J is a prefactor with dimensions of energy, and g is another coupling coefficient that determines the relative strength of the external field compared to the nearest neighbor interaction. The model obeys a global \mathbb_N symmetry, which is generated by the unitary operator U_X = \prod_j X_j where the product is over every site of the lattice. In o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Potts Model
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light of a specific frequency (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kramers–Wannier Duality
The Kramers–Wannier duality is a symmetry in statistical physics. It relates the free energy of a two-dimensional square-lattice Ising model at a low temperature to that of another Ising model at a high temperature. It was discovered by Hendrik Kramers and Gregory Wannier in 1941. With the aid of this duality Kramers and Wannier found the exact location of the critical point for the Ising model on the square lattice. Similar dualities establish relations between free energies of other statistical models. For instance, in 3 dimensions the Ising model is dual to an Ising gauge model. Intuitive idea The 2-dimensional Ising model exists on a lattice, which is a collection of squares in a chessboard pattern. With the finite lattice, the edges can be connected to form a torus. In theories of this kind, one constructs an involutive transform. For instance, Lars Onsager suggested that the Star-Triangle transformation could be used for the triangular lattice. Now the dual o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Creation And Annihilation Operators
Creation operators and annihilation operators are Operator (mathematics), mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually denoted \hat) lowers the number of particles in a given state by one. A creation operator (usually denoted \hat^\dagger) increases the number of particles in a given state by one, and it is the Hermitian adjoint, adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac. Creation and annihilation operators can act on states of various types of particles. For example, in quantum chemistry and many-body theory the creation and annihilation operators often act on electron states. They can also refer specifically to the ladder operators for the quantum harmonic oscillator. In the la ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Central Charge
In theoretical physics, a central charge is an operator ''Z'' that commutes with all the other symmetry operators. The adjective "central" refers to the center of the symmetry group—the subgroup of elements that commute with all other elements of the original group—often embedded within a Lie algebra. In some cases, such as two-dimensional conformal field theory, a central charge may also commute with all of the other operators, including operators that are not symmetry generators. Overview More precisely, the central charge is the charge that corresponds, by Noether's theorem, to the center of the central extension of the symmetry group. In theories with supersymmetry, this definition can be generalized to include supergroups and Lie superalgebras. A central charge is any operator which commutes with all the other supersymmetry generators. Theories with extended supersymmetry typically have many operators of this kind. In string theory, in the first quantized formali ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Phase Transition
In physics, a quantum phase transition (QPT) is a phase transition between different quantum phases ( phases of matter at zero temperature). Contrary to classical phase transitions, quantum phase transitions can only be accessed by varying a physical parameter—such as magnetic field or pressure—at absolute zero temperature. The transition describes an abrupt change in the ground state of a many-body system due to its quantum fluctuations. Such a quantum phase transition can be a second-order phase transition. Quantum phase transitions can also be represented by the topological fermion condensation quantum phase transition, see e.g. strongly correlated quantum spin liquid. In case of three dimensional Fermi liquid, this transition transforms the Fermi surface into a Fermi volume. Such a transition can be a first-order phase transition, for it transforms two dimensional structure ( Fermi surface) into three dimensional. As a result, the topological charge of Fermi li ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Without Loss Of Generality
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicate the assumption that what follows is chosen arbitrarily, narrowing the premise to a particular case, but does not affect the validity of the proof in general. The other cases are sufficiently similar to the one presented that proving them follows by essentially the same logic. As a result, once a proof is given for the particular case, it is trivial to adapt it to prove the conclusion in all other cases. In many scenarios, the use of "without loss of generality" is made possible by the presence of symmetry. For example, if some property ''P''(''x'',''y'') of real numbers is known to be symmetric in ''x'' and ''y'', namely that ''P''(''x'',''y'') is equivalent to ''P''(''y'',''x''), then in proving that ''P''(''x'',''y'') holds for every ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thermodynamic Limit
In statistical mechanics, the thermodynamic limit or macroscopic limit, of a system is the Limit (mathematics), limit for a large number of particles (e.g., atoms or molecules) where the volume is taken to grow in proportion with the number of particles.S.J. Blundell and K.M. Blundell, "Concepts in Thermal Physics", Oxford University Press (2009) The thermodynamic limit is defined as the limit of a system with a large volume, with the particle density held fixed: : N \to \infty,\, V \to \infty,\, \frac N V =\text In this limit, macroscopic thermodynamics is valid. There, thermal fluctuations in global quantities are negligible, and all List of thermodynamic properties, thermodynamic quantities, such as pressure and energy, are simply functions of the thermodynamic variables, such as temperature and density. For example, for a large volume of gas, the fluctuations of the total internal energy are negligible and can be ignored, and the average internal energy can be predicted fro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Antiferromagnetism
In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. This is, like ferromagnetism and ferrimagnetism, a manifestation of ordered magnetism. The phenomenon of antiferromagnetism was first introduced by Lev Landau in 1933. Generally, antiferromagnetic order may exist at sufficiently low temperatures, but vanishes at and above the Néel temperature – named after Louis Néel, who had first identified this type of magnetic ordering. Above the Néel temperature, the material is typically paramagnetic. Measurement When no external field is applied, the antiferromagnetic structure corresponds to a vanishing total magnetization. In an external magnetic field, a kind of ferrimagnetic behavior may be displayed in the antiferromagnetic phase, with the absolute value of one of the sublattice magne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |