HOME
*





Totally Ordered Group
In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group ''G'' equipped with a total order "≤" that is ''translation-invariant''. This may have different meanings. We say that (''G'', ≤) is a: * left-ordered group if ≤ is left-invariant, that is ''a'' ≤ ''b'' implies ''ca'' ≤ ''cb'' for all ''a'', ''b'', ''c'' in ''G'', * right-ordered group if ≤ is right-invariant, that is ''a'' ≤ ''b'' implies ''ac'' ≤ ''bc'' for all ''a'', ''b'', ''c'' in ''G'', * bi-ordered group if ≤ is bi-invariant, that is it is both left- and right-invariant. A group ''G'' is said to be left-orderable (or right-orderable, or bi-orderable) if there exists a left- (or right-, or bi-) invariant order on ''G''. A simple necessary condition for a group to be left-orderable is to have no elements of finite order; however this is not a sufficient condition. It is equivalent for a group to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partially Ordered Group
In abstract algebra, a partially ordered group is a group (''G'', +) equipped with a partial order "≤" that is ''translation-invariant''; in other words, "≤" has the property that, for all ''a'', ''b'', and ''g'' in ''G'', if ''a'' ≤ ''b'' then ''a'' + ''g'' ≤ ''b'' + ''g'' and ''g'' +'' a'' ≤ ''g'' +'' b''. An element ''x'' of ''G'' is called positive if 0 ≤ ''x''. The set of elements 0 ≤ ''x'' is often denoted with ''G''+, and is called the positive cone of ''G''. By translation invariance, we have ''a'' ≤ ''b'' if and only if 0 ≤ -''a'' + ''b''. So we can reduce the partial order to a monadic property: if and only if For the general group ''G'', the existence of a positive cone specifies an order on ''G''. A group ''G'' is a partially orderable group if and only if there exists a subset ''H'' (which is ''G''+) of ''G'' such that: * 0 ∈ ''H'' * if ''a'' ∈ ''H'' and ''b'' ∈ ''H'' then ''a'' + ''b'' ∈ ''H'' * if ''a'' ∈ ''H'' then -''x'' + ''a'' + ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hahn Embedding Theorem
In mathematics, especially in the area of abstract algebra dealing with ordered structures on abelian groups, the Hahn embedding theorem gives a simple description of all linearly ordered abelian groups. It is named after Hans Hahn. Overview The theorem states that every linearly ordered abelian group ''G'' can be embedded as an ordered subgroup of the additive group ℝΩ endowed with a lexicographical order, where ℝ is the additive group of real numbers (with its standard order), Ω is the set of ''Archimedean equivalence classes'' of ''G'', and ℝΩ is the set of all functions from Ω to ℝ which vanish outside a well-ordered set. Let 0 denote the identity element of ''G''. For any nonzero element ''g'' of ''G'', exactly one of the elements ''g'' or −''g'' is greater than 0; denote this element by , ''g'', . Two nonzero elements ''g'' and ''h'' of ''G'' are ''Archimedean equivalent'' if there exist natural numbers ''N'' and ''M'' such that ''N'', ''g'', &nb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclically Ordered Group
In mathematics, a cyclically ordered group is a set with both a group structure and a cyclic order, such that left and right multiplication both preserve the cyclic order. Cyclically ordered groups were first studied in depth by Ladislav Rieger in 1947. They are a generalization of cyclic groups: the infinite cyclic group and the finite cyclic groups . Since a linear order induces a cyclic order, cyclically ordered groups are also a generalization of linearly ordered groups: the rational numbers , the real numbers , and so on. Some of the most important cyclically ordered groups fall into neither previous category: the circle group and its subgroups, such as the subgroup of rational points. Quotients of linear groups It is natural to depict cyclically ordered groups as quotients: one has and . Even a once-linear group like , when bent into a circle, can be thought of as . showed that this picture is a generic phenomenon. For any ordered group and any central element t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (discrete Subgroup)
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood. The theory is particularly rich for lattices in semisimple Lie groups or more generally in semisimple algebraic groups over local fields. In particular there is a wealth of rigidity results in this setting, and a celebrated theorem of Grigory Margulis states that in most cases all lattices are obtained as arithmetic groups. Lattices are also well-studied in some other classes of groups, in particular groups associated to Kac–Moody algebras and automorphisms groups of regular trees (the latter are known as ''tree lattices''). Lattices are of inter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical System
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, a dynamical system has a State ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kaplansky Conjectures
The mathematician Irving Kaplansky is notable for proposing numerous conjectures in several branches of mathematics, including a list of ten conjectures on Hopf algebras. They are usually known as Kaplansky's conjectures. Group rings Let be a field, and a torsion-free group. Kaplansky's ''zero divisor conjecture'' states: * The group ring does not contain nontrivial zero divisors, that is, it is a domain. Two related conjectures are known as, respectively, Kaplansky's ''idempotent conjecture'': * does not contain any non-trivial idempotents, i.e., if , then or . and Kaplansky's ''unit conjecture'' (which was originally made by Graham Higman and popularized by Kaplansky): * does not contain any non-trivial units, i.e., if in , then for some in and in . The zero-divisor conjecture implies the idempotent conjecture and is implied by the unit conjecture. As of 2021, the zero divisor and idempotent conjectures are open. The unit conjecture, however, was disproved for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystallographic Group
In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it unchanged. In three dimensions, space groups are classified into 219 distinct types, or 230 types if chiral copies are considered distinct. Space groups are discrete cocompact groups of isometries of an oriented Euclidean space in any number of dimensions. In dimensions other than 3, they are sometimes called Bieberbach groups. In crystallography, space groups are also called the crystallographic or Fedorov groups, and represent a description of the symmetry of the crystal. A definitive source regarding 3-dimensional space groups is the ''International Tables for Crystallography'' . History Space groups in 2 dimensions are the 17 wallpaper groups which have been known for several centuries, though the proof that the list was complete was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Braid Group
A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-stranded structure. More complex patterns can be constructed from an arbitrary number of strands to create a wider range of structures (such as a fishtail braid, a five-stranded braid, rope braid, a French braid and a waterfall braid). The structure is usually long and narrow with each component strand functionally equivalent in zigzagging forward through the overlapping mass of the others. It can be compared with the process of weaving, which usually involves two separate perpendicular groups of strands (warp and weft). Historically, the materials used have depended on the indigenous plants and animals available in the local area. During the Industrial Revolution, mechanized braiding equipment was invented to increase production. The braiding te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Right-angled Artin Group
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles are also formed by the intersection of two planes. These are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection. ''Angle'' is also used to designate the measure of an angle or of a rotation. This measure is the ratio of the length of a circular arc to its radius. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. History and etymology The word ''angle'' comes from the Latin word ''angulus'', meaning "corner"; cognate words are the Greek ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Group
In mathematics, the free group ''F''''S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''−1''t'', but ''s'' ≠ ''t''−1 for ''s'',''t'',''u'' ∈ ''S''). The members of ''S'' are called generators of ''F''''S'', and the number of generators is the rank of the free group. An arbitrary group ''G'' is called free if it is isomorphic to ''F''''S'' for some subset ''S'' of ''G'', that is, if there is a subset ''S'' of ''G'' such that every element of ''G'' can be written in exactly one way as a product of finitely many elements of ''S'' and their inverses (disregarding trivial variations such as ''st'' = ''suu''−1''t''). A related but different notion is a free abelian group; both notions are particular instances of a free object from universal algebra. As such, free groups are defined by their universal property. History Free ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]