HOME
*



picture info

Total Curvature
In mathematical study of the differential geometry of curves, the total curvature of an immersed plane curve is the integral of curvature along a curve taken with respect to arc length: :\int_a^b k(s)\,ds. The total curvature of a closed curve is always an integer multiple of 2, called the index of the curve, or turning number – it is the winding number of the unit tangent vector about the origin, or equivalently the degree of the map to the unit circle assigning to each point of the curve, the unit velocity vector at that point. This map is similar to the Gauss map for surfaces. Comparison to surfaces This relationship between a local geometric invariant, the curvature, and a global topological invariant, the index, is characteristic of results in higher-dimensional Riemannian geometry such as the Gauss–Bonnet theorem. Invariance According to the Whitney–Graustein theorem, the total curvature is invariant under a regular homotopy of a curve: it is the degree of the Gau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Winding Number Around Point
An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil ( spiral or helix). Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, and sensor coils. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external ''time-varying'' magnetic field through the interior of the coil generates an EMF (voltage) in the conductor. A current through any conductor creates a circular magnetic field around the conductor due to Ampere's law. The advantage of using the coil shape is that it increases the strength of the magnetic field produced by a given current. The magnetic fields generated by the separate turns of wire all pass through the center of the coil and add ( superpose) to produce a strong field there. The more turns of w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Whitney–Graustein Theorem
In the mathematical field of topology, a regular homotopy refers to a special kind of homotopy between immersions of one manifold in another. The homotopy must be a 1-parameter family of immersions. Similar to homotopy classes, one defines two immersions to be in the same regular homotopy class if there exists a regular homotopy between them. Regular homotopy for immersions is similar to isotopy of embeddings: they are both restricted types of homotopies. Stated another way, two continuous functions f,g : M \to N are homotopic if they represent points in the same path-components of the mapping space C(M, N), given the compact-open topology. The space of immersions is the subspace of C(M, N) consisting of immersions, denoted by \operatorname(M, N). Two immersions f, g: M \to N are regularly homotopic if they represent points in the same path-component of \operatorname(M,N). Examples Any two knots in 3-space are equivalent by regular homotopy, though not by isotopy. The Whitney– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fáry–Milnor Theorem
In the mathematical theory of knots, the Fáry–Milnor theorem, named after István Fáry and John Milnor, states that three-dimensional smooth curves with small total curvature must be unknotted. The theorem was proved independently by Fáry in 1949 and Milnor in 1950. It was later shown to follow from the existence of quadrisecants . Statement If ''K'' is any closed curve in Euclidean space that is sufficiently smooth to define the curvature κ at each of its points, and if the total absolute curvature is less than or equal to 4π, then ''K'' is an unknot, i.e.: : \text\ \oint_K , \kappa(s), \, \mathrms \le 4 \pi,\ \text\ K\ \text. The contrapositive tells us that if ''K'' is not an unknot, i.e. ''K'' is not isotopic to the circle, then the total curvature will be strictly greater than 4π. Notice that having the total curvature less than or equal to 4 is merely a sufficient condition for ''K'' to be an unknot; it is not a necessary condition In logic and mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Knot Invariant
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a ''knot invariant'' is a rule that assigns to any knot a quantity such that if and are equivalent then ."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification,Purcell, Jessica (2020). ''Hyperbolic Knot Theory'', p.7. American Mathematical Society. "A ''knot invariant'' is a function from the set of knots to some other set whose value depends only on the equiva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot (mathematics)
In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of which takes one knot to the other. A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed — there are no ends to tie or untie on a mathematical knot. Physical properties such as friction and thickness also do not apply, although there are mathematical definitions of a knot that take such properties into account. The term ''knot'' is also applied to embeddings of in , especially in the case . The branch of mathematics that studies knots is known as knot theory and has many relations to graph theory. Formal definition A knot is an embedding of the circle () into three-dimensional Euclidean space (), or the 3-sphere (), since the 3-sphere is compact. Two knots are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Signum Function
In mathematics, the sign function or signum function (from '' signum'', Latin for "sign") is an odd mathematical function that extracts the sign of a real number. In mathematical expressions the sign function is often represented as . To avoid confusion with the sine function, this function is usually called the signum function. Definition The signum function of a real number is a piecewise function which is defined as follows: \sgn x :=\begin -1 & \text x 0. \end Properties Any real number can be expressed as the product of its absolute value and its sign function: x = , x, \sgn x. It follows that whenever is not equal to 0 we have \sgn x = \frac = \frac\,. Similarly, for ''any'' real number , , x, = x\sgn x. We can also ascertain that: \sgn x^n=(\sgn x)^n. The signum function is the derivative of the absolute value function, up to (but not including) the indeterminacy at zero. More formally, in integration theory it is a weak derivative, and in convex functio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsion Of Curves
Torsion may refer to: Science * Torsion (mechanics), the twisting of an object due to an applied torque * Torsion of spacetime, the field used in Einstein–Cartan theory and ** Alternatives to general relativity * Torsion angle, in chemistry Biology and medicine * Torsion fracture or spiral fracture, a bone fracture when torque is applied * Organ torsion, twisting that interrupts the blood supply to that organ: ** Splenic torsion, causing splenic infarction ** Ovarian torsion ** Testicular torsion * Penile torsion, a congenital condition * Torsion of the digestive tract in some domestic animals: ** Torsion, a type of horse colic ** Gastric torsion, or gastric dilatation volvulus * Torsion (gastropod), a developmental feature of all gastropods Mathematics * Torsion of a curve * Torsion tensor, in differential geometry * Torsion (algebra), in ring theory * Torsion group, in group theory and arithmetic geometry * Tor functor, the derived functors of the tensor product of modules ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent Developable
In the mathematical study of the differential geometry of surfaces, a tangent developable is a particular kind of developable surface obtained from a curve in Euclidean space as the surface swept out by the tangent lines to the curve. Such a surface is also the envelope of the tangent planes to the curve. Parameterization Let \gamma(t) be a parameterization of a smooth space curve. That is, \gamma is a twice-differentiable function with nowhere-vanishing derivative that maps its argument t (a real number) to a point in space; the curve is the image of \gamma. Then a two-dimensional surface, the tangent developable of \gamma, may be parameterized by the map :(s,t)\mapsto \gamma(t) + s\gamma(t). The original curve forms a boundary of the tangent developable, and is called its directrix or edge of regression. This curve is obtained by first developing the surface into the plane, and then considering the image in the plane of the generators of the ruling on the surface. The enve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Curve
In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions. Important subclasses of convex curves include the closed convex curves (the boundaries of bounded convex sets), the smooth curves that are convex, and the strictly convex curves, which have the additional property that each supporting line passes through a unique point of the curve. Combinations of these properties have also been considered. Bounded convex curves have a well-defined length, which can be obtained by approximating them with polygons, or from the average length of their projections onto a line. The maximum number of grid points that can belong to a single curve is controlled by its length. The points at which a convex curve has a unique supporting line are dens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Absolute Curvature
In differential geometry, the total absolute curvature of a smooth curve is a number defined by integrating the absolute value of the curvature around the curve. It is a dimensionless quantity that is invariant under similarity transformations of the curve, and that can be used to measure how far the curve is from being a convex curve. If the curve is parameterized by its arc length, the total absolute curvature can be expressed by the formula :\int , \kappa(s), ds, where is the arc length parameter and is the curvature. This is almost the same as the formula for the total curvature, but differs in using the absolute value instead of the signed curvature.. See in particular section 21.1, "Rotation index and total curvature of a curve"pp. 359–360 Because the total curvature of a simple closed curve in the Euclidean plane is always exactly 2, the total ''absolute'' curvature of a simple closed curve is also always ''at least'' 2. It is exactly 2 for a convex curve, and grea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polygonal Chain
In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (A_1, A_2, \dots, A_n) called its vertices. The curve itself consists of the line segments connecting the consecutive vertices. Name A polygonal chain may also be called a polygonal curve, polygonal path, polyline,. piecewise linear curve, broken line or, in geographic information systems, a linestring or linear ring. Variations A simple polygonal chain is one in which only consecutive (or the first and the last) segments intersect and only at their endpoints. A closed polygonal chain is one in which the first vertex coincides with the last one, or, alternatively, the first and the last vertices are also connected by a line segment. A simple closed polygonal chain in the plane is the boundary of a simple polygon. Often the term "polygon" is used in the meaning of "closed polygonal chain", but in some cases it is important to dr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Polygon
In geometry, a simple polygon is a polygon that does not Intersection (Euclidean geometry), intersect itself and has no holes. That is, it is a flat shape consisting of straight, non-intersecting line segments or "sides" that are joined pairwise to form a single closed curve, closed path. If the sides intersect then the polygon is not simple. The qualifier "simple" is frequently omitted, with the above definition then being understood to define a polygon in general. The definition given above ensures the following properties: * A polygon encloses a region (mathematics), region (called its interior) which always has a measurable area. * The line segments that make up a polygon (called sides or edges) meet only at their endpoints, called vertices (singular: vertex) or less formally "corners". * Exactly two edges meet at each vertex. * The number of edges always equals the number of vertices. Two edges meeting at a corner are usually required to form an angle that is not straight ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]