HOME
*





Torsten Carleman
Torsten Carleman (8 July 1892, Visseltofta, Osby Municipality – 11 January 1949, Stockholm), born Tage Gillis Torsten Carleman, was a Swedish mathematician, known for his results in classical analysis and its applications. As the director of the Mittag-Leffler Institute for more than two decades, Carleman was the most influential mathematician in Sweden. Work The dissertation of Carleman under Erik Albert Holmgren, as well as his work in the early 1920s, was devoted to singular integral equations. He developed the spectral theory of integral operators with ''Carleman kernels'', that is, kernels ''K''(''x'', ''y'') such that ''K''(''y'', ''x'') =  for almost every (''x'', ''y''), and : \int , K(x, y) , ^2 dy < \infty for almost every ''x''. In the mid-1920s, Carleman developed the theory of

picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions. These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were implicitly present in the early days of ancient Greek mathematics. For instance, an infinite geometric sum is implicit in Zeno's paradox of the dichotomy. (St ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jensen's Formula
In the mathematical field known as complex analysis, Jensen's formula, introduced by , relates the average magnitude of an analytic function on a circle with the number of its zeros inside the circle. It forms an important statement in the study of entire functions. The statement Suppose that ''ƒ'' is an analytic function in a region in the complex plane which contains the closed disk D of radius ''r'' about the origin, ''a''1, ''a''2, ..., ''a''''n'' are the zeros of ''ƒ'' in the interior of D (repeated according to their respective multiplicity), and that ''ƒ''(z) ≠ 0 for all z \in\partialD, as well as ''ƒ''(0) ≠ 0. Jensen's formula states that :\log , f(0), = \sum_^n \log \left( \frac\right) + \frac \int_0^ \log, f(re^), \, d\theta. This formula establishes a connection between the moduli of the zeros of the function ''ƒ'' inside the disk D and the average of log , ''f''(''z''), on the boundary circle , ''z'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Carleman Formulae
Torsten Carleman (8 July 1892, Visseltofta, Osby Municipality – 11 January 1949, Stockholm), born Tage Gillis Torsten Carleman, was a Swedish mathematician, known for his results in classical analysis and its applications. As the director of the Mittag-Leffler Institute for more than two decades, Carleman was the most influential mathematician in Sweden. Work The dissertation of Carleman under Erik Albert Holmgren, as well as his work in the early 1920s, was devoted to singular integral equations. He developed the spectral theory of integral operators with ''Carleman kernels'', that is, kernels ''K''(''x'', ''y'') such that ''K''(''y'', ''x'') =  for almost every (''x'', ''y''), and : \int , K(x, y) , ^2 dy < \infty for almost every ''x''. In the mid-1920s, Carleman developed the theory of

Aequationes Mathematicae
''Aequationes Mathematicae'' is a mathematical journal. It is primarily devoted to functional equations, but also publishes papers in dynamical systems, combinatorics, and geometry. As well as publishing regular journal submissions on these topics, it also regularly reports on international symposia on functional equations and produces bibliographies on the subject. János Aczél founded the journal in 1968 at the University of Waterloo, in part because of the long publication delays of up to four years in other journals at the time of its founding. It is currently published by Springer Science+Business Media, with Zsolt Páles of the University of Debrecen as its editor in chief. János Aczél remains its honorary editor in chief. it was listed as a second-quartile mathematics journal by SCImago Journal Rank The SCImago Journal Rank (SJR) indicator is a measure of the prestige of scholarly journals that accounts for both the number of citations received by a journal and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carleman Inequality
Carleman's inequality is an inequality in mathematics, named after Torsten Carleman, who proved it in 1923 and used it to prove the Denjoy–Carleman theorem on quasi-analytic classes. Statement Let a_1,a_2,a_3,\dots be a sequence of non-negative real numbers, then : \sum_^\infty \left(a_1 a_2 \cdots a_n\right)^ \le \mathrm \sum_^\infty a_n. The constant \mathrm (euler number) in the inequality is optimal, that is, the inequality does not always hold if \mathrm is replaced by a smaller number. The inequality is strict (it holds with "<" instead of "≤") if some element in the sequence is non-zero. Integral version Carleman's inequality has an integral version, which states that : \int_0^\infty \exp\left\ \,\mathrmx \leq \mathrm \int_0^\infty f(x) \,\mathrmx for any ''f'' ≥ 0. Carleson's inequality A generalisation, due to Lennart Carleson, states the following: for any convex function ''g'' with ''g''(0) = 0, and for any -1  1, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment Problem
In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure ''μ'' to the sequences of moments :m_n = \int_^\infty x^n \,d\mu(x)\,. More generally, one may consider :m_n = \int_^\infty M_n(x) \,d\mu(x)\,. for an arbitrary sequence of functions ''M''''n''. Introduction In the classical setting, μ is a measure on the real line, and ''M'' is the sequence . In this form the question appears in probability theory, asking whether there is a probability measure having specified mean, variance and so on, and whether it is unique. There are three named classical moment problems: the Hamburger moment problem in which the support of μ is allowed to be the whole real line; the Stieltjes moment problem, for , +∞); and the Hausdorff moment problem for a bounded interval, which without loss of generality may be taken as , 1 Existence A sequence of numbers ''m''''n'' is the sequence of moments of a measure ''μ'' if an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-analytic Function
In mathematics, a quasi-analytic class of functions is a generalization of the class of real analytic functions based upon the following fact: If ''f'' is an analytic function on an interval [''a'',''b''] ⊂ R, and at some point ''f'' and all of its derivatives are zero, then ''f'' is identically zero on all of [''a'',''b'']. Quasi-analytic classes are broader classes of functions for which this statement still holds true. Definitions Let M=\_^\infty be a sequence of positive real numbers. Then the Denjoy-Carleman class of functions ''C''''M''([''a'',''b'']) is defined to be those ''f'' ∈ ''C''∞([''a'',''b'']) which satisfy :\left , \frac(x) \right , \leq A^ k! M_k for all ''x'' ∈ [''a'',''b''], some constant ''A'', and all non-negative integers ''k''. If ''M''''k'' = 1 this is exactly the class of real analytic functions on [''a'',''b'']. The class ''C''''M''([''a'',''b'']) is said to be ''quasi-analytic'' if whenever ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Almost Everywhere
In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to the concept of measure zero, and is analogous to the notion of ''almost surely'' in probability theory. More specifically, a property holds almost everywhere if it holds for all elements in a set except a subset of measure zero, or equivalently, if the set of elements for which the property holds is conull. In cases where the measure is not complete, it is sufficient that the set be contained within a set of measure zero. When discussing sets of real numbers, the Lebesgue measure is usually assumed unless otherwise stated. The term ''almost everywhere'' is abbreviated ''a.e.''; in older literature ''p.p.'' is used, to stand for the equivalent French language phrase ''presque partout''. A set with full measure is one whose complement i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Integral Transform
In mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function, integral kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]