Topographic Rossby Waves
Topographic Rossby waves are geophysical waves that form due to bottom irregularities. For ocean dynamics, the bottom irregularities are on the ocean floor such as the mid-ocean ridge. For atmospheric dynamics, the other primary branch of geophysical fluid dynamics, the bottom irregularities are found on land, for example in the form of mountains. Topographic Rossby waves are one of two types of geophysical waves named after the meteorologist Carl-Gustaf Rossby. The other type of Rossby waves are called planetary Rossby waves and have a different physical origin. Planetary Rossby waves form due to the changing Coriolis parameter over the earth. Rossby waves are quasi-geostrophic, dispersive waves. This means that not only the Coriolis force and the pressure-gradient force influence the flow, as in geostrophic flow, but also inertia. Physical derivation This section describes the mathematically simplest situation where topographic Rossby waves form: a uniform bottom slope. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rossby Waves
Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby. They are observed in the atmospheres and oceans of planets owing to the rotation of the planet. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream (especially around the polar vortices). Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean. Rossby wave types Atmospheric waves Atmospheric Rossby waves result from the conservation of potential vorticity and are influenced by the Coriolis force and pressure gradient. The rotation causes fluids to turn to the right as they move in the northern hemisphere and to the left in the southern hemisphere. For example, a fluid that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the ''net'' force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes: * the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force; * that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass. The SI unit for acceleration is metre per second squared (, \mathrm). For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rossby Radius Of Deformation
In atmospheric dynamics and physical oceanography, the Rossby radius of deformation is the length scale at which rotational effects become as important as buoyancy or gravity wave effects in the evolution of the flow about some disturbance. For a barotropic ocean: L_R \equiv \frac, where \,g is the gravitational acceleration, \,D is the water depth, and \,f is the Coriolis parameter. For ''f'' = 1×10−4 s−1 appropriate to 45° latitude, g = 9.81 m/s^2 and ''D'' = 4 km, ''LR'' ≈ 2000 km; using the same latitude and gravity but changing D to 40 m; ''LR'' ≈ 200 km. The ''n''th baroclinic Rossby radius is: : L_ \equiv \frac, where \,N is the Brunt–Väisälä frequency, \,H is the scale height, and ''n'' = 1, 2, .... In Earth's atmosphere, the ratio ''N''/''f''0 is typically of order 100, so the Rossby radius is about 100 times the vertical scale height, ''H''. For a vertical scale associated with the height of the tropopause, ''L''''R'', 1 & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ageostrophy
Ageostrophy or (ageostrophic flow) is the difference between the ''actual'' wind or current and the geostrophic wind or geostrophic current. Since geostrophy is an exact balance between the Coriolis force and the pressure gradient force, ageostrophic flow reflects an imbalance, and thus is often implicated in disturbances, vertical motions (important for weather), and rapid changes with time. Ageostrophic flow reflects the existence of all the other terms in the momentum equation neglected in that idealization, including friction and material acceleration Dv/Dt, which includes the centrifugal force in curved flow. See also *geostrophic *geostrophic wind In atmospheric science, geostrophic flow () is the theoretical wind that would result from an exact balance between the Coriolis force and the pressure gradient force. This condition is called '' geostrophic equilibrium'' or ''geostrophic balanc ... References External linksMeteo 422 – Lecture 17 – The Omega Equation Al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Advection
In the field of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is also a fluid. The properties that are carried with the advected substance are conserved properties such as energy. An example of advection is the transport of pollutants or silt in a river by bulk water flow downstream. Another commonly advected quantity is energy or enthalpy. Here the fluid may be any material that contains thermal energy, such as water or air. In general, any substance or conserved, extensive quantity can be advected by a fluid that can hold or contain the quantity or substance. During advection, a fluid transports some conserved quantity or material via bulk motion. The fluid's motion is described mathematically as a vector field, and the transported material is described by a scalar field showing its distribution ov ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rossby Number
The Rossby number (Ro), named for Carl-Gustav Arvid Rossby, is a dimensionless number used in describing fluid flow. The Rossby number is the ratio of inertial force to Coriolis force, terms , \mathbf \cdot \nabla \mathbf, \sim U^2 / L and \Omega \times \mathbf \sim U\Omega in the Navier–Stokes equations respectively. It is commonly used in geophysical phenomena in the oceans and atmosphere, where it characterizes the importance of Coriolis accelerations arising from planetary rotation. It is also known as the Kibel number. The Rossby number (Ro, not Ro) is defined as : \text = \frac, where ''U'' and ''L'' are respectively characteristic velocity and length scales of the phenomenon, and f = 2\Omega \sin \phi is the Coriolis frequency, with \Omega being the angular frequency of planetary rotation, and \phi the latitude. A small Rossby number signifies a system strongly affected by Coriolis forces, and a large Rossby number signifies a system in which inertial and centrifugal f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Length Scale
In physics, length scale is a particular length or distance determined with the precision of at most a few orders of magnitude. The concept of length scale is particularly important because physical phenomena of different length scales cannot affect each other and are said to decouple. The decoupling of different length scales makes it possible to have a self-consistent theory that only describes the relevant length scales for a given problem. Scientific reductionism says that the physical laws on the shortest length scales can be used to derive the effective description at larger length scales. The idea that one can derive descriptions of physics at different length scales from one another can be quantified with the renormalization group. In quantum mechanics the length scale of a given phenomenon is related to its de Broglie wavelength \ell = \hbar/p where \hbar is the reduced Planck's constant and p is the momentum that is being probed. In relativistic mechanics time an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme Rossby Waves
A scheme is a systematic plan for the implementation of a certain idea. Scheme or schemer may refer to: Arts and entertainment * ''The Scheme'' (TV series), a BBC Scotland documentary series * The Scheme (band), an English pop band * ''The Scheme'', an action role-playing video game for the PC-8801, made by Quest Corporation * Schemer (comics), Richard Fisk, a Marvel Comics villain turned antihero * Horace Schemer, a fictional character in the TV series ''Shining Time Station'' * Schemee, a fictional child character and Schemer's nephew in the TV Series ''Shining Time Station'' * ''Schemers'' (film), a Scottish film Other uses * Classification scheme, eg a thesaurus, a taxonomy, a data model, or an ontology * Scheme (programming language), a minimalist dialect of Lisp * Scheme (mathematics), a concept in algebraic geometry * Scheme (linguistics), a figure of speech that changes a sentence's structure * Scam, an attempt to swindle or cheat people through deception **Get-rich- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Barotropic Fluid
In fluid dynamics, a barotropic fluid is a fluid whose density is a function of pressure only. The barotropic fluid is a useful model of fluid behavior in a wide variety of scientific fields, from meteorology to astrophysics. The density of most liquids is nearly constant (isopycnic), so it can be stated that their densities vary only weakly with pressure and temperature. Water, which varies only a few percent with temperature and salinity, may be approximated as barotropic. In general, air is not barotropic, as it is a function of temperature and pressure; but, under certain circumstances, the barotropic assumption can be useful. In astrophysics, barotropic fluids are important in the study of stellar interiors or of the interstellar medium. One common class of barotropic model used in astrophysics is a polytropic fluid. Typically, the barotropic assumption is not very realistic. In meteorology, a barotropic atmosphere is one that for which the density of the air depends on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homogeneity And Heterogeneity
Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous is distinctly nonuniform in at least one of these qualities. Heterogeneous Mixtures, in chemistry, is where certain elements are unwillingly combined and, when given the option, will separate. Etymology and spelling The words ''homogeneous'' and ''heterogeneous'' come from Medieval Latin ''homogeneus'' and ''heterogeneus'', from Ancient Greek ὁμογενής (''homogenēs'') and ἑτερογενής (''heterogenēs''), from ὁμός (''homos'', “same”) and ἕτερος (''heteros'', “other, another, different”) respectively, followed by γένος (''genos'', “kind”); - ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuity Equation
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations. Continuity equations are a stronger, local form of conservation laws. For example, a weak version of the law of conservation of energy states that energy can neither be created nor destroyed—i.e., the total amount of energy in the universe is fixed. This statement does not rule out the possibility that a quantity of energy could disappear from one point while simultaneously appearing at another point. A stronger statement is that energy is ''locally'' conserved: energy can neither be created nor destroyed, ''nor'' can it " t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kinematic Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |