HOME

TheInfoList



OR:

In the field of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
,
engineering Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
, and earth sciences, advection is the
transport Transport (in British English), or transportation (in American English), is the intentional movement of humans, animals, and goods from one location to another. Modes of transport include air, land ( rail and road), water, cable, pipel ...
of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is also a fluid. The properties that are carried with the advected substance are conserved properties such as
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
. An example of advection is the transport of
pollutant A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like o ...
s or
silt Silt is granular material of a size between sand and clay and composed mostly of broken grains of quartz. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water. Silt usually has a floury feel wh ...
in a
river A river is a natural flowing watercourse, usually freshwater Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. Although the ...
by bulk water flow downstream. Another commonly advected quantity is energy or enthalpy. Here the fluid may be any material that contains thermal energy, such as
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
or air. In general, any substance or conserved, extensive quantity can be advected by a fluid that can hold or contain the quantity or substance. During advection, a fluid transports some conserved quantity or material via bulk motion. The fluid's motion is described
mathematically Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
as a vector field, and the transported material is described by a
scalar field In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical quantit ...
showing its distribution over space. Advection requires currents in the fluid, and so cannot happen in rigid solids. It does not include transport of substances by molecular diffusion. Advection is sometimes confused with the more encompassing process of
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
, which is the combination of advective transport and diffusive transport. In
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
and physical oceanography, advection often refers to the transport of some property of the atmosphere or
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
, such as
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
, humidity (see
moisture Moisture is the presence of a liquid, especially water, often in trace amounts. Small amounts of water may be found, for example, in the air (humidity), in foods, and in some commercial products. Moisture also refers to the amount of water vapo ...
) or
salinity Salinity () is the saltiness or amount of salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensionless and equal ...
. Advection is important for the formation of orographic clouds and the precipitation of water from clouds, as part of the hydrological cycle.


Distinction between advection and convection

The term ''advection'' often serves as a synonym for ''
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
'', and this correspondence of terms is used in the literature. More technically, convection applies to the movement of a fluid (often due to density gradients created by thermal gradients), whereas advection is the movement of some material by the velocity of the fluid. Thus, although it might seem confusing, it is technically correct to think of momentum being advected by the velocity field in the Navier-Stokes equations, although the resulting motion would be considered to be convection. Because of the specific use of the term convection to indicate transport in association with thermal gradients, it is probably safer to use the term advection if one is uncertain about which terminology best describes their particular system.


Meteorology

In
meteorology Meteorology is a branch of the atmospheric sciences (which include atmospheric chemistry and physics) with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did no ...
and physical oceanography, advection often refers to the horizontal transport of some property of the atmosphere or
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
, such as
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
, humidity or salinity, and convection generally refers to vertical transport (vertical advection). Advection is important for the formation of orographic clouds (terrain-forced convection) and the precipitation of water from clouds, as part of the hydrological cycle.


Other quantities

The advection equation also applies if the quantity being advected is represented by a
probability density function In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) c ...
at each point, although accounting for
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
is more difficult.


Mathematics of advection

The advection equation is the
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
that governs the motion of a conserved
scalar field In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical quantit ...
as it is advected by a known velocity vector field. It is derived using the scalar field's conservation law, together with Gauss's theorem, and taking the infinitesimal limit. One easily visualized example of advection is the transport of ink dumped into a river. As the river flows, ink will move downstream in a "pulse" via advection, as the water's movement itself transports the ink. If added to a lake without significant bulk water flow, the ink would simply disperse outwards from its source in a
diffusive Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of ...
manner, which is not advection. Note that as it moves downstream, the "pulse" of ink will also spread via diffusion. The sum of these processes is called
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the c ...
.


The advection equation

In Cartesian coordinates the advection
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another ...
is \mathbf \cdot \nabla = u_x \frac + u_y \frac + u_z \frac. where \mathbf = (u_x, u_y, u_z) is the velocity field, and \nabla is the del operator (note that Cartesian coordinates are used here). The advection equation for a conserved quantity described by a
scalar field In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical quantit ...
\psi is expressed mathematically by a continuity equation: where \nabla \cdot is the divergence operator and again \mathbf is the velocity vector field. Frequently, it is assumed that the flow is incompressible, that is, the velocity field satisfies \nabla\cdot = 0 . In this case, \mathbf is said to be solenoidal. If this is so, the above equation can be rewritten as In particular, if the flow is steady, then \cdot\nabla \psi = 0 which shows that \psi is constant along a streamline. If a vector quantity \mathbf (such as a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and t ...
) is being advected by the solenoidal velocity field \mathbf, the advection equation above becomes: \frac + \left( \cdot \nabla \right) =0. Here, \mathbf is a vector field instead of the
scalar field In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical quantit ...
\psi.


Solving the equation

The advection equation is not simple to solve
numerically Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
: the system is a hyperbolic partial differential equation, and interest typically centers on discontinuous "shock" solutions (which are notoriously difficult for numerical schemes to handle). Even with one space dimension and a constant velocity field, the system remains difficult to simulate. The equation becomes \frac + u_x \frac=0 where \psi = \psi(x,t) is the
scalar field In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number ( dimensionless) or a scalar physical quantit ...
being advected and u_x is the x component of the vector \mathbf = (u_x, 0, 0).


Treatment of the advection operator in the incompressible Navier–Stokes equations

According to Zang, numerical simulation can be aided by considering the skew-symmetric form for the advection operator. \frac \cdot \nabla + \frac \nabla ( ) where \nabla ( ) = nabla ( u_x),\nabla ( u_y),\nabla ( u_z)/math> and \mathbf is the same as above. Since skew symmetry implies only imaginary eigenvalues, this form reduces the "blow up" and "spectral blocking" often experienced in numerical solutions with sharp discontinuities (see Boyd). Using vector calculus identities, these operators can also be expressed in other ways, available in more software packages for more coordinate systems. \mathbf \cdot \nabla \mathbf = \nabla \left( \frac \right) + \left( \nabla \times \mathbf \right) \times \mathbf \frac \mathbf \cdot \nabla \mathbf + \frac \nabla (\mathbf \mathbf) = \nabla \left( \frac \right) + \left( \nabla \times \mathbf \right) \times \mathbf + \frac \mathbf (\nabla \cdot \mathbf) This form also makes visible that the skew-symmetric operator introduces error when the velocity field diverges. Solving the advection equation by numerical methods is very challenging and there is a large scientific literature about this.


See also

*
Atmosphere of Earth The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing ...
* Conservation equation * Courant–Friedrichs–Lewy condition * Kinematic wave * Overshoot (signal) * Péclet number *
Radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, vi ...


References

{{Meteorological variables Vector calculus Atmospheric dynamics Conservation equations Equations of fluid dynamics Oceanography Convection Heat transfer Transport phenomena