Toeplitz Matrices
   HOME
*





Toeplitz Matrices
In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix: :\qquad\begin a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end. Any ''n'' × ''n'' matrix ''A'' of the form :A = \begin a_0 & a_ & a_ & \cdots & \cdots & a_ \\ a_1 & a_0 & a_ & \ddots & & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_ & a_ \\ \vdots & & \ddots & a_1 & a_0 & a_ \\ a_ & \cdots & \cdots & a_2 & a_1 & a_0 \end is a Toeplitz matrix. If the ''i'', ''j'' element of ''A'' is denoted ''A''''i'', ''j'' then we have :A_ = A_ = a_. A Toeplitz matrix is not necessarily square. Solving a Toeplitz system A matrix equation of the form :Ax = b is called a Toeplitz syste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions. Linear algebra is also used in most sciences and fields of engineering, because it allows modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order approximations, using the fact that the differential of a multivariate function at a point is the linear ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centrosymmetric Matrix
In mathematics, especially in linear algebra and matrix theory, a centrosymmetric matrix is a matrix which is symmetric about its center. More precisely, an ''n''×''n'' matrix ''A'' = 'A''''i'',''j''is centrosymmetric when its entries satisfy :''A''''i'',''j'' = ''A''''n''−''i'' + 1,''n''−''j'' + 1 for ''i'', ''j'' ∊. If ''J'' denotes the ''n''×''n'' exchange matrix with 1 on the antidiagonal and 0 elsewhere (that is, ''J''''i'',''n'' + 1 − ''i'' = 1; ''J''''i'',''j'' = 0 if ''j'' ≠ ''n'' +1− ''i''), then a matrix ''A'' is centrosymmetric if and only if ''AJ'' = ''JA''. Examples * All 2×2 centrosymmetric matrices have the form \begin a & b \\ b & a \end. * All 3×3 centrosymmetric matrices have the form \begin a & b & c \\ d & e & d \\ c & b & a \end. * Symmetric Toeplitz matrices are centrosymmetric. Algebraic structure and properties *If ''A'' and ''B'' are centrosymmetric matrices over a field ''F'', then so are ''A'' + ''B'' and ''cA'' for any ''c'' in '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vandermonde Matrix
In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an matrix :V=\begin 1 & x_1 & x_1^2 & \dots & x_1^\\ 1 & x_2 & x_2^2 & \dots & x_2^\\ 1 & x_3 & x_3^2 & \dots & x_3^\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & x_m & x_m^2 & \dots & x_m^ \end, or :V_ = x_i^ \, for all indices and . Some authors define the Vandermonde matrix as the transpose of the above matrix. The determinant of a square Vandermonde matrix is called a ''Vandermonde polynomial'' or ''Vandermonde determinant''. Its value is the polynomial :\det(V) = \prod_ (x_j - x_i) which is non-zero if and only if all x_i are distinct. The Vandermonde determinant was sometimes called the ''discriminant'', although, presently, the discriminant of a polynomial is the square of the Vandermonde determinant of the roots of the polynomial. The Vandermonde determinant is an alternating form in the x_i, meaning that exchang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is \left begin 3 & 0 \\ 0 & 2 \end\right/math>, while an example of a 3×3 diagonal matrix is \left begin 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end\right/math>. An identity matrix of any size, or any multiple of it (a scalar matrix), is a diagonal matrix. A diagonal matrix is sometimes called a scaling matrix, since matrix multiplication with it results in changing scale (size). Its determinant is the product of its diagonal values. Definition As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix with ''n'' columns and ''n'' rows is diagonal if \forall i,j \in \, i \ne j \implies d_ = 0. However, the main diagonal entries are unrestricted. The term ''diagonal matrix'' may s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rank Of A Matrix
In linear algebra, the rank of a matrix is the dimension of the vector space generated (or spanned) by its columns. p. 48, § 1.16 This corresponds to the maximal number of linearly independent columns of . This, in turn, is identical to the dimension of the vector space spanned by its rows. Rank is thus a measure of the " nondegenerateness" of the system of linear equations and linear transformation encoded by . There are multiple equivalent definitions of rank. A matrix's rank is one of its most fundamental characteristics. The rank is commonly denoted by or ; sometimes the parentheses are not written, as in .Alternative notation includes \rho (\Phi) from and . Main definitions In this section, we give some definitions of the rank of a matrix. Many definitions are possible; see Alternative definitions for several of these. The column rank of is the dimension of the column space of , while the row rank of is the dimension of the row space of . A fundamental result in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Definite Symmetric Matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z^* Mz is positive for every nonzero complex column vector z, where z^* denotes the conjugate transpose of z. Positive semi-definite matrices are defined similarly, except that the scalars z^\textsfMz and z^* Mz are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite. A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the ''dimension'' of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Definition A basis of a vector space over a field (such as the real numbers or the complex numbers ) is a linearly independent subset of that spans . This me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diagonalizable Matrix
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P and a diagonal matrix D such that or equivalently (Such D are not unique.) For a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation T = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, A is represented by Diagonalization is the process of finding the above P and Diagonalizable matrices and maps are especially easy for computations, once their eigenvalues and eigenvectors are known. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power, and the determi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymptotic Analysis
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function as becomes very large. If , then as becomes very large, the term becomes insignificant compared to . The function is said to be "''asymptotically equivalent'' to , as ". This is often written symbolically as , which is read as " is asymptotic to ". An example of an important asymptotic result is the prime number theorem. Let denote the prime-counting function (which is not directly related to the constant pi), i.e. is the number of prime numbers that are less than or equal to . Then the theorem states that \pi(x)\sim\frac. Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation. Definition Formally, given functions and , we define a binary relation f(x) \sim g(x) \qu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The expr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compression (functional Analysis)
In functional analysis, the compression of a linear operator ''T'' on a Hilbert space to a subspace ''K'' is the operator :P_K T \vert_K : K \rightarrow K , where P_K : H \rightarrow K is the orthogonal projection onto ''K''. This is a natural way to obtain an operator on ''K'' from an operator on the whole Hilbert space. If ''K'' is an invariant subspace for ''T'', then the compression of ''T'' to ''K'' is the restricted operator ''K→K'' sending ''k'' to ''Tk''. More generally, for a linear operator ''T'' on a Hilbert space H and an isometry ''V'' on a subspace W of H, define the compression of ''T'' to W by :T_W = V^*TV : W \rightarrow W, where V^* is the adjoint of ''V''. If ''T'' is a self-adjoint operator, then the compression T_W is also self-adjoint. When ''V'' is replaced by the inclusion map In mathematics, if A is a subset of B, then the inclusion map (also inclusion function, insertion, or canonical injection) is the function \iota that sends each element x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trigonometric Polynomial
In the mathematical subfields of numerical analysis and mathematical analysis, a trigonometric polynomial is a finite linear combination of functions sin(''nx'') and cos(''nx'') with ''n'' taking on the values of one or more natural numbers. The coefficients may be taken as real numbers, for real-valued functions. For complex coefficients, there is no difference between such a function and a finite Fourier series. Trigonometric polynomials are widely used, for example in trigonometric interpolation applied to the interpolation of periodic functions. They are used also in the discrete Fourier transform. The term ''trigonometric polynomial'' for the real-valued case can be seen as using the analogy: the functions sin(''nx'') and cos(''nx'') are similar to the monomial basis for polynomials. In the complex case the trigonometric polynomials are spanned by the positive and negative powers of ''e''''ix'', Laurent polynomials in ''z'' under the change of variables ''z'' = ''e''''ix' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]