HOME



picture info

Centrosymmetric Matrix
In mathematics, especially in linear algebra and Matrix (mathematics), matrix theory, a centrosymmetric matrix is a matrix (mathematics), matrix which is symmetric about its center. Formal definition An matrix is centrosymmetric when its entries satisfy A_ = A_ \quad \texti,j \in \. Alternatively, if denotes the exchange matrix with 1 on the antidiagonal and 0 elsewhere: J_ = \begin 1, & i + j = n + 1 \\ 0, & i + j \ne n + 1\\ \end then a matrix is centrosymmetric if and only if . Examples * All 2 × 2 centrosymmetric matrices have the form \begin a & b \\ b & a \end. * All 3 × 3 centrosymmetric matrices have the form \begin a & b & c \\ d & e & d \\ c & b & a \end. * Symmetric matrix, Symmetric Toeplitz matrix, Toeplitz matrices are centrosymmetric. Algebraic structure and properties *If and are centrosymmetric matrices over a field (mathematics), field , then so are and for any in . Moreover, the matrix product is centrosymmetr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Matrix Symmetry Qtl4
Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the material in between a eukaryotic organism's cells * Matrix (chemical analysis), the non-analyte components of a sample * Matrix (geology), the fine-grained material in which larger objects are embedded * Matrix (composite), the constituent of a composite material * Hair matrix, produces hair * Nail matrix, part of the nail in anatomy Technology * Matrix (mass spectrometry), a compound that promotes the formation of ions * Matrix (numismatics), a tool used in coin manufacturing * Matrix (printing), a mould for casting letters * Matrix (protocol), an open standard for real-time communication * Matrix (record production), or master, a disc used in the production of phonograph records ** Matrix number, of a gramophone record * Diode matri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associative Algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of ''K''). The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a module or vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a commutative ring ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra for which the multiplication is commutative, or, equivalently, an associative algebra that is also a commutative ring. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MathWorld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Digital Library grant to the University of Illinois at Urbana–Champaign. History Eric W. Weisstein, the creator of the site, was a physics and astronomy student who got into the habit of writing notes on his mathematical readings. In 1995 he put his notes online and called it "Eric's Treasure Trove of Mathematics." It contained hundreds of pages/articles, covering a wide range of mathematical topics. The site became popular as an extensive single resource on mathematics on the web. In 1998, he made a contract with CRC Press and the contents of the site were published in print and CD-ROM form, titled ''CRC Concise Encyclopedia of Mathematics''. The free online version became only partially accessible to the public. In 1999 Weisstein we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : A \text \quad \iff \quad a_ = \overline or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as A \text \quad \iff \quad A = A^\mathsf Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although in quantum mechanics, A^\ast typically means the complex conjugate onl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ground Field
In mathematics, a ground field is a field ''K'' fixed at the beginning of the discussion. Use It is used in various areas of algebra: In linear algebra In linear algebra, the concept of a vector space may be developed over any field. In algebraic geometry In algebraic geometry, in the foundational developments of André Weil the use of fields other than the complex numbers was essential to expand the definitions to include the idea of abstract algebraic variety over ''K'', and generic point relative to ''K''. In Lie theory Reference to a ground field may be common in the theory of Lie algebras (''qua'' vector spaces) and algebraic groups (''qua'' algebraic varieties). In Galois theory In Galois theory, given a field extension ''L''/''K'', the field ''K'' that is being extended may be considered the ground field for an argument or discussion. Within algebraic geometry, from the point of view of scheme theory In mathematics, specifically algebraic geometry, a scheme is a stru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bisymmetric Matrix
In mathematics, a bisymmetric matrix is a square matrix that is symmetric about both of its main diagonals. More precisely, an matrix is bisymmetric if it satisfies both (it is its own transpose), and , where is the exchange matrix. For example, any matrix of the form \begin a & b & c & d & e \\ b & f & g & h & d \\ c & g & i & g & c \\ d & h & g & f & b \\ e & d & c & b & a \end = \begin a_ & a_ & a_ & a_ & a_ \\ a_ & a_ & a_ & a_ & a_ \\ a_ & a_ & a_ & a_ & a_ \\ a_ & a_ & a_ & a_ & a_ \\ a_ & a_ & a_ & a_ & a_ \end is bisymmetric. The associated 5\times 5 exchange matrix for this example is J_ = \begin 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end Properties *Bisymmetric matrices are both symmetric centrosymmetric and symmetric persymmetric. *The product of two bisymmetric matrices is a centrosymmetric matrix. * Real-valued bisymmetric matrices are precisely those symmetric matrices whose eigenvalues rema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative integers. The set (mathematics), set of all integers is often denoted by the boldface or blackboard bold The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the set of natural numbers, the set of integers \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , 5/4, and Square root of 2, are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involutory Matrix
In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix \bold A_ is an involution if and only if \bold A^2 = \bold I, where \bold I is the n \times n identity matrix. Involutory matrices are all square roots of the identity matrix. This is a consequence of the fact that any invertible matrix multiplied by its inverse is the identity.. Examples The 2\times2 real matrix \begina & b \\ c & -a \end is involutory provided that a^2 + bc = 1 . The Pauli matrices in are involutory: \begin \sigma_1 = \sigma_x &= \begin 0 & 1 \\ 1 & 0 \end, \\ \sigma_2 = \sigma_y &= \begin 0 & -i \\ i & 0 \end, \\ \sigma_3 = \sigma_z &= \begin 1 & 0 \\ 0 & -1 \end. \end One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix. A special case of another class of elementary matrix, that which represents multiplication of a row ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commuting Matrices
In linear algebra, two matrices A and B are said to commute if AB=BA, or equivalently if their commutator ,B AB-BA is zero. Matrices A that commute with matrix B are called the commutant of matrix B (and vice versa). A set of matrices A_1, \ldots, A_k is said to commute if they commute pairwise, meaning that every pair of matrices in the set commutes. Characterizations and properties * Commuting matrices preserve each other's eigenspaces. As a consequence, commuting matrices over an algebraically closed field are simultaneously triangularizable; that is, there are bases over which they are both upper triangular. In other words, if A_1,\ldots,A_k commute, there exists a similarity matrix P such that P^ A_i P is upper triangular for all i \in \. The converse is not necessarily true, as the following counterexample shows: *:\begin 1 & 2 \\ 0 & 3 \end\begin 1 & 1 \\ 0 & 1 \end = \begin 1 & 3 \\ 0 & 3 \end \ne \begin 1 & 5 \\ 0 & 3 \end=\begin 1 & 1 \\ 0 & 1 \end\begin 1 & 2 \\ 0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvector
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi- dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]