HOME
*





Tits Index
In the mathematics, mathematical study of Lie algebras and Lie groups, a Satake diagram is a generalization of a Dynkin diagram introduced by whose configurations classify semisimple Lie algebra, simple Lie algebras over the field (mathematics), field of real numbers. The Satake diagrams associated to a Dynkin diagram classify real form (Lie theory), real forms of the complex Lie algebra corresponding to the Dynkin diagram. More generally, the Tits index or Satake–Tits diagram of a reductive algebraic group over a field is a generalization of the Satake diagram to arbitrary fields, introduced by , that reduces the classification of reductive algebraic groups to that of Linear algebraic group#Examples, anisotropic Reductive group, reductive algebraic groups. Satake diagrams are not the same as Vogan diagrams of a Lie group, although they look similar. Definition A Satake diagram is obtained from a Dynkin diagram by blackening some vertices, and connecting other vertices in pai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Split Lie Algebra
In the mathematical field of Lie theory, a split Lie algebra is a pair (\mathfrak, \mathfrak) where \mathfrak is a Lie algebra and \mathfrak < \mathfrak is a splitting , where "splitting" means that for all x \in \mathfrak, \operatorname_ x is triangularizable. If a Lie algebra admits a splitting, it is called a splittable Lie algebra. Note that for reductive Lie algebras, the Cartan subalgebra is required to contain the center. Over an algebraically closed field such as the

Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon (199 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Irreducible Tits Indices
In the mathematical theory of linear algebraic groups, a Tits index (or index) is an object used to classify semisimple algebraic groups defined over a base field ''k'', not assumed to be algebraically closed. The possible irreducible indices were classified by Jacques Tits, and this classification is reproduced below. (Because every index is a direct sum of irreducible indices, classifying ''all'' indices amounts to classifying irreducible indices.) Organization of the list An index can be represented as a Dynkin diagram with certain vertices drawn close to each other (the orbit of the vertices under the *-action of the Galois group of ''k'') and with certain sets of vertices circled (the orbits of the non-distinguished vertices under the *-action). This representation captures the full information of the index except when the underlying Dynkin diagram is D4, in which case one must distinguish between an action by the cyclic group ''C''3 or the permutation group ''S''3. Alterna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relative Root System
In mathematics, restricted root systems, sometimes called relative root systems, are the root systems associated with a symmetric space. The associated finite reflection group is called the restricted Weyl group. The restricted root system of a symmetric space and its dual can be identified. For symmetric spaces of noncompact type arising as homogeneous spaces of a semisimple Lie group, the restricted root system and its Weyl group are related to the Iwasawa decomposition of the Lie group. See also *Satake diagram In the mathematics, mathematical study of Lie algebras and Lie groups, a Satake diagram is a generalization of a Dynkin diagram introduced by whose configurations classify semisimple Lie algebra, simple Lie algebras over the field (mathematics), fi ... References * * * * * Lie groups Lie algebras {{mathematics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cartan Subalgebra
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra \mathfrak of a Lie algebra \mathfrak that is self-normalising (if ,Y\in \mathfrak for all X \in \mathfrak, then Y \in \mathfrak). They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra \mathfrak over a field of characteristic 0 . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements ''x'' such that the adjoint endomorphism \operatorname(x) : \mathfrak \to \mathfrak is semisimple (i.e., diagonalizable). Sometimes this characterization is simply taken as the definition of a Cartan subalgebra.pg 231 In general, a subalgebra is called toral if it consists of semisimple elements. Over an algebraically closed field, a toral subalgebra is automatically abelian. Thus, over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan Decomposition
In mathematics, the Cartan decomposition is a decomposition of a Semisimple Lie algebra, semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing. Cartan involutions on Lie algebras Let \mathfrak be a real semisimple Lie algebra and let B(\cdot,\cdot) be its Killing form. An Involution (mathematics), involution on \mathfrak is a Lie algebra automorphism \theta of \mathfrak whose square is equal to the identity. Such an involution is called a ''Cartan involution'' on \mathfrak if B_\theta(X,Y) := -B(X,\theta Y) is a positive definite bilinear form. Two involutions \theta_1 and \theta_2 are considered equivalent if they differ only by an inner automorphism. Any real semisimple Lie algebra has a Cartan involution, and any two Cartan involutions are equi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Cohomology
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated to a field extension ''L''/''K'' acts in a natural way on some abelian groups, for example those constructed directly from ''L'', but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor. History The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory, at the time it was in the process of ridding itself of connections to L-functions. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Lie Algebra
In the mathematical field of Lie theory, there are two definitions of a compact Lie algebra. Extrinsically and topologically, a compact Lie algebra is the Lie algebra of a compact Lie group; this definition includes tori. Intrinsically and algebraically, a compact Lie algebra is a real Lie algebra whose Killing form is negative definite; this definition is more restrictive and excludes tori,. A compact Lie algebra can be seen as the smallest real form of a corresponding complex Lie algebra, namely the complexification. Definition Formally, one may define a compact Lie algebra either as the Lie algebra of a compact Lie group, or as a real Lie algebra whose Killing form is negative definite. These definitions do not quite agree: * The Killing form on the Lie algebra of a compact Lie group is negative ''semi''definite, not negative definite in general. * If the Killing form of a Lie algebra is negative definite, then the Lie algebra is the Lie algebra of a compact ''semisimple' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]