HOME
*



picture info

Thomson Problem
The objective of the Thomson problem is to determine the minimum electrostatic potential energy configuration of electrons constrained to the surface of a unit sphere that repel each other with a force given by Coulomb's law. The physicist J. J. Thomson posed the problem in 1904 after proposing an atomic model, later called the plum pudding model, based on his knowledge of the existence of negatively charged electrons within neutrally-charged atoms. Related problems include the study of the geometry of the minimum energy configuration and the study of the large behavior of the minimum energy. Mathematical statement The electrostatic interaction energy occurring between each pair of electrons of equal charges (e_i = e_j = e, with e the elementary charge of an electron) is given by Coulomb's Law, :U_(N)=k_\text. Here, k_\text is the Coulomb constant and r_=, \mathbf_i - \mathbf_j, is the distance between each pair of electrons located at points on the sphere defined by ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equidistant
A point is said to be equidistant from a set of objects if the distances between that point and each object in the set are equal. In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is their perpendicular bisector. In three dimensions, the locus of points equidistant from two given points is a plane, and generalising further, in n-dimensional space the locus of points equidistant from two points in ''n''-space is an (''n''−1)-space. For a triangle the circumcentre is a point equidistant from each of the three vertices. Every non-degenerate triangle has such a point. This result can be generalised to cyclic polygons: the circumcentre is equidistant from each of the vertices. Likewise, the incentre of a triangle or any other tangential polygon is equidistant from the points of tangency of the polygon's sides with the circle. Every point on a perpendicular bisector of the side of a triangle or other polygon is equidist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Periodic Table
The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of chemistry. It is a graphic formulation of the periodic law, which states that the properties of the chemical elements exhibit an approximate periodic dependence on their atomic numbers. The table is divided into four roughly rectangular areas called blocks. The rows of the table are called periods, and the columns are called groups. Elements from the same group of the periodic table show similar chemical characteristics. Trends run through the periodic table, with nonmetallic character (keeping their own electrons) increasing from left to right across a period, and from down to up across a group, and metallic character (surrendering electrons to other atoms) increasing in the opposite direction. The underlying reason for these trends is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Walks
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term ''random walk'' was first introduced by Karl Pearson in 1905. Lattice random walk A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Search (optimization)
In computer science, local search is a heuristic method for solving computationally hard optimization problems. Local search can be used on problems that can be formulated as finding a solution maximizing a criterion among a number of candidate solutions. Local search algorithms move from solution to solution in the space of candidate solutions (the ''search space'') by applying local changes, until a solution deemed optimal is found or a time bound is elapsed. Local search algorithms are widely applied to numerous hard computational problems, including problems from computer science (particularly artificial intelligence), mathematics, operations research, engineering, and bioinformatics. Examples of local search algorithms are WalkSAT, the 2-opt algorithm for the Traveling Salesman Problem and the Metropolis–Hastings algorithm. Examples Some problems where local search has been applied are: # The vertex cover problem, in which a solution is a vertex cover of a graph, and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithms
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spherical Design
A spherical design, part of combinatorial design theory in mathematics, is a finite set of ''N'' points on the ''d''-dimensional unit n-sphere, ''d''-sphere ''Sd'' such that the average value of any polynomial ''f'' of degree ''t'' or less on the set equals the average value of ''f'' on the whole sphere (that is, the integral of ''f'' over ''Sd'' divided by the area or Measure (mathematics), measure of ''Sd''). Such a set is often called a spherical ''t''-design to indicate the value of ''t'', which is a fundamental parameter. The concept of a spherical design is due to Delsarte, Goethals, and Seidel, although these objects were understood as particular examples of cubature formulas earlier. Spherical designs can be of value in approximation theory, in statistics for experimental design, in combinatorics, and in geometry. The main problem is to find examples, given ''d'' and ''t'', that are not too large; however, such examples may be hard to come by. Spherical t-designs have also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

N-sphere
In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, called the ''center''. It is the generalization of an ordinary sphere in the ordinary three-dimensional space. The "radius" of a sphere is the constant distance of its points to the center. When the sphere has unit radius, it is usual to call it the unit -sphere or simply the -sphere for brevity. In terms of the standard norm, the -sphere is defined as : S^n = \left\ , and an -sphere of radius can be defined as : S^n(r) = \left\ . The dimension of -sphere is , and must not be confused with the dimension of the Euclidean space in which it is naturally embedded. An -sphere is the surface or boundary of an -dimensional ball. In particular: *the pair of points at the ends of a (one-dimensional) line segment is a 0-sphere, *a circle, which i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tammes Problem
In geometry, the Tammes problem is a problem in packing a given number of circles on the surface of a sphere such that the minimum distance between circles is maximized. It is named after the Dutch botanist Pieter Merkus Lambertus Tammes (the nephew of pioneering botanist Jantina Tammes) who posed the problem in his 1930 doctoral dissertation on the distribution of pores on pollen grains.Pieter Merkus Lambertus Tammes (1930): ''On the number and arrangements of the places of exit on the surface of pollen-grains'', University of Groningen Mathematicians independent of Tammes began studying circle packing on the sphere in the early 1940s; it was not until twenty years later that the problem became associated with his name. It can be viewed as a particular special case of the generalized Thomson problem of minimizing the total Coulomb force of electrons in a spherical arrangement. Thus far, solutions have been proven only for small numbers of circles: 3 through 14, and 24. There ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poppy-seed Bagel Theorem
In physics, the poppy-seed bagel theorem concerns interacting particles (e.g., electrons) confined to a bounded surface (or body) A when the particles repel each other pairwise with a magnitude that is proportional to the inverse distance between them raised to some positive power s. In particular, this includes the Coulomb law observed in Electrostatics and Riesz potentials extensively studied in Potential theory. Other classes of potentials, which not necessarily involve the Riesz kernel, for example nearest neighbor interactions, are also described by this theorem in the macroscopic regime. For N such particles, a stable equilibrium state, which depends on the parameter s, is attained when the associated potential energy of the system is minimal (the so-called generalized Thomson problem). For large numbers of points, these equilibrium configurations provide a discretization of A which may or may not be nearly uniform with respect to the surface area (or volume) of A. The poppy- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]