HOME
*





Thierry Aubin
Thierry Aubin (6 May 1942 – 21 March 2009) was a French mathematician who worked at the Centre de Mathématiques de Jussieu, and was a leading expert on Riemannian geometry and non-linear partial differential equations. His fundamental contributions to the theory of the Yamabe equation led, in conjunction with results of Trudinger and Schoen, to a proof of the Yamabe Conjecture: every compact Riemannian manifold can be conformally rescaled to produce a manifold of constant scalar curvature. Along with Yau, he also showed that Kähler manifolds with negative first Chern classes always admit Kähler–Einstein metrics, a result closely related to the Calabi conjecture. The latter result, established by Yau, provides the largest class of known examples of compact Einstein manifolds. Aubin was the first mathematician to propose the Cartan–Hadamard conjecture. Aubin was a visiting scholar at the Institute for Advanced Study in 1979. He was elected to the Académie des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Académie Des Sciences
The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French scientific research. It was at the forefront of scientific developments in Europe in the 17th and 18th centuries, and is one of the earliest Academies of Sciences. Currently headed by Patrick Flandrin (President of the Academy), it is one of the five Academies of the Institut de France. History The Academy of Sciences traces its origin to Colbert's plan to create a general academy. He chose a small group of scholars who met on 22 December 1666 in the King's library, near the present-day Bibliothèque Nationals, and thereafter held twice-weekly working meetings there in the two rooms assigned to the group. The first 30 years of the Academy's existence were relatively informal, since no statutes had as yet been laid down for the institution. In contrast to its British ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Analysis
Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck,Jackson, Allyn. (2019)Founder of geometric anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moser–Trudinger Inequality
In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a function. The inequality is a limiting case of Sobolev imbedding and can be stated as the following theorem: Let \Omega be a bounded domain in \mathbb^n satisfying the cone condition. Let mp=n and p>1. Set : A(t)=\exp\left( t^ \right)-1. Then there exists the embedding : W^(\Omega)\hookrightarrow L_A(\Omega) where : L_A(\Omega)=\left\. The space :L_A(\Omega) is an example of an Orlicz space In mathematical analysis, and especially in real, harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes the ''L'p'' spaces. Like the ''L'p'' spaces, they are Banach spaces. The spaces are na .... Referenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sobolev Embedding Theorem
In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev. Sobolev embedding theorem Let denote the Sobolev space consisting of all real-valued functions on whose first weak derivatives are functions in . Here is a non-negative integer and . The first part of the Sobolev embedding theorem states that if , and are two real numbers such that :\frac-\frac = \frac -\frac, then :W^(\mathbf^n)\subseteq W^(\mathbf^n) and the embedding is continuous. In the special case of and , Sobolev embedding gives :W^(\mathbf^n) \subseteq L^(\mathbf^n) where is the Sobolev conjugate of , given byp. (Note that 1/p^*p.) Thus, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sobolev Space
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of ''Lp''-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function. Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their importance comes from the fact that weak solutions of some important partial differential equations exist in appropriate Sobolev spaces, even when there are no strong solutions in spaces of continuous functions with the derivatives understood in the classical sense. Motivation In this section and throughout the article \Omega is an open subset of \R^n. There are many c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Pierre Bourguignon
Jean-Pierre Bourguignon (born 21 July 1947) is a French mathematician, working in the field of differential geometry. Biography Born in Lyon, he studied at École Polytechnique in Palaiseau, graduating in 1969. For his graduate studies he went to Paris Diderot University, where he obtained his PhD in 1974 under the direction of Marcel Berger. He was president of the Société Mathématique de France from 1990 to 1992. From 1995 to 1998, he was president of the European Mathematical Society. He was director of the Institut des Hautes Études Scientifiques near Paris from 1994 to 2013. Between 1 January 2014 and 31 December 2019 he was the President of the European Research Council. Selected publications Articles * * with H. Blaine Lawson and James Simons James Harris Simons (; born 25 April 1938) is an American mathematician, billionaire hedge fund manager, and philanthropist. He is the founder of Renaissance Technologies, a quantitative hedge fund based in East Seta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jerry Kazdan
Jerry Lawrence Kazdan (born 31 October 1937 in Detroit, Michigan) is an American mathematician noted for his work in differential geometry and the study of partial differential equations. His contributions include the Berger–Kazdan comparison theorem, which was a key step in the proof of the Blaschke conjecture and the classification of Wiedersehen manifolds. His best-known work, done in collaboration with Frank Warner, dealt with the problem of prescribing the scalar curvature of a Riemannian metric. Biography Kazdan received his bachelor's degree in 1959 from Rensselaer Polytechnic Institute and his master's degree in 1961 from NYU. He obtained his PhD in 1963 from the Courant Institute of Mathematical Sciences at New York University; his thesis was entitled ''A Boundary Value Problem Arising in the Theory of Univalent Functions'' and was supervised by Paul Garabedian. He then took a position as a Benjamin Peirce Instructor at Harvard University. Since 1966, he has been ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kähler–Einstein Metric
In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The most important special case of these are the Calabi–Yau manifolds, which are Kähler and Ricci-flat. The most important problem for this area is the existence of Kähler–Einstein metrics for compact Kähler manifolds. This problem can be split up into three cases dependent on the sign of the first Chern class of the Kähler manifold: * When the first Chern class is negative, there is always a Kähler–Einstein metric, as Thierry Aubin and Shing-Tung Yau proved independently. * When the first Chern class is zero, there is always a Kähler–Einstein metric, as Yau proved in the Calabi conjecture. That leads to the name Calabi–Yau manifolds. He was awarded with the Fields Medal partly because of this work. * The third case, the positiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calculus Of Variations
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as ''geodesics''. A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends up ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler Geometry
Kähler may refer to: ;People *Alexander Kähler (born 1960), German television journalist *Birgit Kähler (born 1970), German high jumper *Erich Kähler (1906–2000), German mathematician *Heinz Kähler (1905–1974), German art historian and archaeologist *Luise Kähler (1869–1955), German trade union leader and politician *Martin Kähler (1835–1912), German theologian *Otto Kähler (1894–1967), German admiral *Wilhelmine Kähler (1864–1941), German politician ;Other * Kähler Keramik, a Danish ceramics manufacturer *Kähler manifold, an important geometric complex manifold See also *Kahler (other) Kahler may refer to: Places *Kahler, Luxembourg, a small town in the commune of Garnich *Kahler Asten, a German mountain range Other uses *Kahler (surname) *Kahler's disease, a cancer otherwise known as ''multiple myeloma'' *Kahler Tremolo System, ... {{disambiguation, surname Occupational surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ricci Curvature
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space. The Ricci tensor can be characterized by measurement of how a shape is deformed as one moves along geodesics in the space. In general relativity, which involves the pseudo-Riemannian setting, this is reflected by the presence of the Ricci tensor in the Raychaudhuri equation. Partly for this reason, the Einstein field equations propose that spacetime can be described by a pseudo-Riemannian metric, with a strikingly simple relationship between the Ricci tensor and the matter content of the universe. Like the metric tensor, the Ricci tensor assigns to each tangent space of the manifold a symmetric bili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]