The Spectrum
   HOME
*





The Spectrum
A spectrum is a condition or value that is not limited to a specific set of values but can vary infinitely within a continuum. Spectrum may also refer to: Science and technology Physics * Continuous spectrum, of any physical quantity that can change smoothly * Discrete spectrum * Electromagnetic spectrum ** Visible spectrum or optical spectrum, a subset of the electromagnetic spectrum ** Emission spectrum, observed in light ** Absorption spectrum, observed in light ** Radio spectrum, radio frequency subset of the electromagnetic spectrum ** Stellar spectrum, the combination of continuum, absorption, and emission lines produced by a star * Energy spectrum, of a collection of particles (particle physics) * Frequency spectrum, of a signal * Power spectrum, of a signal Medicine * Spectrum disorder, a group of mental disorders of similar appearance or thought to share an underlying mechanism ** Autism spectrum, encompassing autism, Asperger's, etc. * Antimicrobial spectrum, the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors in visible light after passing through a prism. As scientific understanding of light advanced, it came to apply to the entire electromagnetic spectrum. It thereby became a mapping of a range of magnitudes (wavelengths) to a range of qualities, which are the perceived "colors of the rainbow" and other properties which correspond to wavelengths that lie outside of the visible light spectrum. Spectrum has since been applied by analogy to topics outside optics. Thus, one might talk about the " spectrum of political opinion", or the "spectrum of activity" of a drug, or the "autism spectrum". In these uses, values within a spectrum may not be associated with precisely quantifiable numbers or definitions. Such uses imply a broad range of condition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Graph Theory
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. The adjacency matrix of a simple undirected graph is a real symmetric matrix and is therefore orthogonally diagonalizable; its eigenvalues are real algebraic integers. While the adjacency matrix depends on the vertex labeling, its spectrum is a graph invariant, although not a complete one. Spectral graph theory is also concerned with graph parameters that are defined via multiplicities of eigenvalues of matrices associated to the graph, such as the Colin de Verdière number. Cospectral graphs Two graphs are called cospectral or isospectral if the adjacency matrices of the graphs are isospectral, that is, if the adjacency matrices have equal multisets of eigenvalues. Cospectral graphs need not be isomorphic, but isomorphic graphs a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (brand)
Spectrum is a trade name of Charter Communications, used to market consumer and commercial cable television, internet, telephone, and wireless services provided by the company. The brand was first introduced in 2014; prior to that, these services were marketed primarily under the Charter name. Following the acquisitions of Time Warner Cable and Bright House Networks by Charter, these operations also assumed the Spectrum brand. Original programming On June 26, 2018, Charter Communications announced it had given '' L.A.'s Finest'' a series order for a first season consisting of 13 episodes. The series premiered as the cable service's first original series on May 13, 2019, marking Charter's first foray into original programming. In August, ''Curfew'' and '' E Is for Edie'' received pickups. On March 6, 2019, the service picked up a 12-episode eighth season of the 1992-1999 NBC sitcom ''Mad About You'', which premiered six of the episodes on November 20, 2019. On June 11, 201 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beatty Sequence
In mathematics, a Beatty sequence (or homogeneous Beatty sequence) is the sequence of integers found by taking the floor of the positive multiples of a positive irrational number. Beatty sequences are named after Samuel Beatty, who wrote about them in 1926. Rayleigh's theorem, named after Lord Rayleigh, states that the complement of a Beatty sequence, consisting of the positive integers that are not in the sequence, is itself a Beatty sequence generated by a different irrational number. Beatty sequences can also be used to generate Sturmian words. Definition Any irrational number r that is greater than one generates the Beatty sequence \mathcal_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor,\ldots The two irrational numbers r and s = r/(r-1) naturally satisfy the equation 1/r + 1/s = 1. The two Beatty sequences \mathcal_r and \mathcal_s that they generate form a ''pair of complementary Beatty sequences''. Here, "complementary" means that every positive integer b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stone Space
In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact totally disconnected Hausdorff space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in the 1930s in the course of his investigation of Boolean algebras, which culminated in his representation theorem for Boolean algebras. Equivalent conditions The following conditions on the topological space X are equivalent: * X is a Stone space; * X is homeomorphic to the projective limit (in the category of topological spaces) of an inverse system of finite discrete spaces; * X is compact and totally separated; * X is compact, T0 , and zero-dimensional (in the sense of the small inductive dimension); * X is coherent and Hausdorff. Examples Important examples of Stone spaces include finite discrete spaces, the Cantor set and the space \Z_p of p-adic integers, where p is any prime number. Generalizing these examples, any product ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral domain R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum Of A Ring
In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings \mathcal. Zariski topology For any ideal ''I'' of ''R'', define V_I to be the set of prime ideals containing ''I''. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For ''f'' ∈ ''R'', define ''D''''f'' to be the set of prime ideals of ''R'' not containing ''f''. Then each ''D''''f'' is an open subset of \operatorname(R), and \ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: in fact, the maximal ideals in ''R'' are precisely the closed points in this topology. By the same reasoning, it is not, in general, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectrum Of A C*-algebra
In mathematics, the spectrum of a C*-algebra or dual of a C*-algebra ''A'', denoted ''Â'', is the set of unitary equivalence classes of irreducible *-representations of ''A''. A *-representation π of ''A'' on a Hilbert space ''H'' is irreducible if, and only if, there is no closed subspace ''K'' different from ''H'' and which is invariant under all operators π(''x'') with ''x'' ∈ ''A''. We implicitly assume that irreducible representation means ''non-null'' irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum ''Â'' is also naturally a topological space; this is similar to the notion of the spectrum of a ring. One of the most important applications of this concept is to provide a notion of dual object for any locally compact group. This dual object is suitable for formulating a Fourier transform and a Plancherel theorem for unimodular separable locally compact groups of type I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Homotopy Theory
In mathematics, stable homotopy theory is the part of homotopy theory (and thus algebraic topology) concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space X, the homotopy groups \pi_(\Sigma^n X) stabilize for n sufficiently large. In particular, the homotopy groups of spheres \pi_(S^n) stabilize for n\ge k + 2. For example, :\langle \text_\rangle = \Z = \pi_1(S^1)\cong \pi_2(S^2)\cong \pi_3(S^3)\cong\cdots :\langle \eta \rangle = \Z = \pi_3(S^2)\to \pi_4(S^3)\cong \pi_5(S^4)\cong\cdots In the two examples above all the maps between homotopy groups are applications of the suspension functor. The first example is a standard corollary of the Hurewicz theorem, that \pi_n(S^n)\cong \Z. In the second example the Hopf map, \eta, is mapped to its suspension \Sigma\eta, which generates \pi_4(S^3)\cong \Z/2. One of the most i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Spectrum (topology)
In algebraic topology, a branch of mathematics, a spectrum is an object representable functor, representing a Cohomology#Generalized cohomology theories, generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory\mathcal^*:\text^ \to \text,there exist spaces E^k such that evaluating the cohomology theory in degree k on a space X is equivalent to computing the homotopy classes of maps to the space E^k, that is\mathcal^k(X) \cong \left[X, E^k\right].Note there are several different category (mathematics), categories of spectra leading to many technical difficulties, but they all determine the same homotopy category, known as the stable homotopy category. This is one of the key points for introducing spectra because they form a natural home for stable homotopy theory. The definition of a spectrum There are many variations of the definition: in general, a ''spectrum'' is any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum Of A Theory
In model theory, a branch of mathematical logic, the spectrum of a theory is given by the number of isomorphism classes of models in various cardinalities. More precisely, for any complete theory ''T'' in a language we write ''I''(''T'', ''κ'') for the number of models of ''T'' (up to isomorphism) of cardinality ''κ''. The spectrum problem is to describe the possible behaviors of ''I''(''T'', ''κ'') as a function of ''κ''. It has been almost completely solved for the case of a countable theory ''T''. Early results In this section ''T'' is a countable complete theory and ''κ'' is a cardinal. The Löwenheim–Skolem theorem shows that if ''I''(''T'',''κ'') is nonzero for one infinite cardinal then it is nonzero for all of them. Morley's categoricity theorem was the first main step in solving the spectrum problem: it states that if ''I''(''T'',''κ'') is 1 for some uncountable ''κ'' then it is 1 for all uncountable ''κ''. Robert Vaught showed that ''I''(''T'',ℵ0) canno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]