HOME
*





Tautological One-form
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle T^Q of a manifold Q. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics with Hamiltonian mechanics (on the manifold Q). The exterior derivative of this form defines a symplectic form giving T^Q the structure of a symplectic manifold. The tautological one-form plays an important role in relating the formalism of Hamiltonian mechanics and Lagrangian mechanics. The tautological one-form is sometimes also called the Liouville one-form, the Poincaré one-form, the canonical one-form, or the symplectic potential. A similar object is the canonical vector field on the tangent bundle. To define the tautological one-form, select a coordinate chart U on T^*Q and a canonical coordinate system on U. Pick an arbitrary point m \in T^*Q. By definition of cotangent bundl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solder Form
In mathematics, more precisely in differential geometry, a soldering (or sometimes solder form) of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold. In intrinsic geometry, other techniques are needed to express it. Soldering was introduced in this general form by Charles Ehresmann in 1950. Soldering of a fibre bundle Let ''M'' be a smooth manifold, and ''G'' a Lie group, and let ''E'' be a smooth fibre bundle over ''M'' with structure group ''G''. Suppose that ''G'' acts transitively on the typical fibre ''F'' of ''E'', and that dim ''F'' = dim ''M''. A soldering of ''E'' to ''M'' consists of the following data: # ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pushforward (differential)
In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of ''φ, d\varphi_x,'' at a point ''x'' is, in some sense, the best linear approximation of ''φ'' near ''x''. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of ''M'' at ''x'' to the tangent space of ''N'' at ''φ''(''x''), d\varphi_x: T_xM \to T_N. Hence it can be used to ''push'' tangent vectors on ''M'' ''forward'' to tangent vectors on ''N''. The differential of a map ''φ'' is also called, by various authors, the derivative or total derivative of ''φ''. Motivation Let \varphi: U \to V be a smooth map from an open subset U of \R^m to an open subset V of \R^n. For any point x in U, the Jacobian of \varphi at x (with respect to the standard coordinates) is the matrix representation of the tot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Section (fiber Bundle)
In the mathematical field of topology, a section (or cross section) of a fiber bundle E is a continuous right inverse of the projection function \pi. In other words, if E is a fiber bundle over a base space, B: : \pi \colon E \to B then a section of that fiber bundle is a continuous map, : \sigma \colon B \to E such that : \pi(\sigma(x)) = x for all x \in B . A section is an abstract characterization of what it means to be a graph. The graph of a function g\colon B \to Y can be identified with a function taking its values in the Cartesian product E = B \times Y , of B and Y : :\sigma\colon B\to E, \quad \sigma(x) = (x,g(x)) \in E. Let \pi\colon E \to B be the projection onto the first factor: \pi(x,y) = x . Then a graph is any function \sigma for which \pi(\sigma(x)) = x . The language of fibre bundles allows this notion of a section to be generalized to the case when E is not necessarily a Cartesian product. If \pi\colon E \to B is a fibre bundle, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pullback (differential Geometry)
Suppose that is a smooth map between smooth manifolds ''M'' and ''N''. Then there is an associated linear map from the space of 1-forms on ''N'' (the linear space of sections of the cotangent bundle) to the space of 1-forms on ''M''. This linear map is known as the pullback (by ''φ''), and is frequently denoted by ''φ''∗. More generally, any covariant tensor field – in particular any differential form – on ''N'' may be pulled back to ''M'' using ''φ''. When the map ''φ'' is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from ''N'' to ''M'' or vice versa. In particular, if ''φ'' is a diffeomorphism between open subsets of R''n'' and R''n'', viewed as a change of coordinates (perhaps between different charts on a manifold ''M''), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Closed Differential Form
In mathematics, especially vector calculus and differential topology, a closed form is a differential form ''α'' whose exterior derivative is zero (), and an exact form is a differential form, ''α'', that is the exterior derivative of another differential form ''β''. Thus, an ''exact'' form is in the ''image'' of ''d'', and a ''closed'' form is in the ''kernel'' of ''d''. For an exact form ''α'', for some differential form ''β'' of degree one less than that of ''α''. The form ''β'' is called a "potential form" or "primitive" for ''α''. Since the exterior derivative of a closed form is zero, ''β'' is not unique, but can be modified by the addition of any closed form of degree one less than that of ''α''. Because , every exact form is necessarily closed. The question of whether ''every'' closed form is exact depends on the topology of the domain of interest. On a contractible domain, every closed form is exact by the Poincaré lemma. More general questions of this kind o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tangent Map
In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of ''φ, d\varphi_x,'' at a point ''x'' is, in some sense, the best linear approximation of ''φ'' near ''x''. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of ''M'' at ''x'' to the tangent space of ''N'' at ''φ''(''x''), d\varphi_x: T_xM \to T_N. Hence it can be used to ''push'' tangent vectors on ''M'' ''forward'' to tangent vectors on ''N''. The differential of a map ''φ'' is also called, by various authors, the derivative or total derivative of ''φ''. Motivation Let \varphi: U \to V be a smooth map from an open subset U of \R^m to an open subset V of \R^n. For any point x in U, the Jacobian of \varphi at x (with respect to the standard coordinates) is the matrix representation of the tota ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Induced Homomorphism
In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space ''X'' to a topological space ''Y'' induces a group homomorphism from the fundamental group of ''X'' to the fundamental group of ''Y''. More generally, in category theory, any functor by definition provides an induced morphism in the target category for each morphism in the source category. For example, fundamental groups, higher homotopy groups, singular homology, and De Rham cohomology are algebraic structures that are ''functorial'', meaning that their definition provides a functor from (e.g.) the category of topological spaces to (e.g.) the category of groups or rings. This means that each space is associated with an algebraic structure, while each continuous map between spaces is associated with a structure-preserving map between structures, called an induced homomorphism. A homomorphism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase Space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually consists of all possible values of position and momentum variables. It is the outer product of direct space and reciprocal space. The concept of phase space was developed in the late 19th century by Ludwig Boltzmann, Henri Poincaré, and Josiah Willard Gibbs. Introduction In a phase space, every degree of freedom or parameter of the system is represented as an axis of a multidimensional space; a one-dimensional system is called a phase line, while a two-dimensional system is called a phase plane. For every possible state of the system or allowed combination of values of the system's parameters, a point is included in the multidimensional space. The system's evolving state over time traces a path (a phase-space trajectory for the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Configuration Space (physics)
In classical mechanics, the parameters that define the configuration of a system are called '' generalized coordinates,'' and the space defined by these coordinates is called the configuration space of the physical system. It is often the case that these parameters satisfy mathematical constraints, such that the set of actual configurations of the system is a manifold in the space of generalized coordinates. This manifold is called the configuration manifold of the system. Notice that this is a notion of "unrestricted" configuration space, i.e. in which different point particles may occupy the same position. In mathematics, in particular in topology, a notion of "restricted" configuration space is mostly used, in which the diagonals, representing "colliding" particles, are removed. Example: a particle in 3D space The position of a single particle moving in ordinary Euclidean 3-space is defined by the vector q=(x,y,z), and therefore its ''configuration space'' is Q=\mathbb^3. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.,p. 397,  §7.2.1 Selection of generalized coordinates/ref> The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates An example of a generalized coordinate would be to describe the position of a pendulum using the angle of the pendulum relative to vertical, rather than by the x and y position of the pendulum. Although there may be many possible choices for generalized coordinates for a physical system, they are generally selected to simplify calculations, such as the solution of the equations of motion for the system. If the coordinates are independent of one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tautological Bundle
In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of k- dimensional subspaces of V, given a point in the Grassmannian corresponding to a k-dimensional vector subspace W \subseteq V, the fiber over W is the subspace W itself. In the case of projective space the tautological bundle is known as the tautological line bundle. The tautological bundle is also called the universal bundle since any vector bundle (over a compact space) is a pullback of the tautological bundle; this is to say a Grassmannian is a classifying space for vector bundles. Because of this, the tautological bundle is important in the study of characteristic classes. Tautological bundles are constructed both in algebraic topology and in algebraic geometry. In algebraic geometry, the tautological line bundle (as invertible sheaf) is :\mathcal_(-1), the dual of the hyperplane bundle or Serre's twisting sheaf \mathcal_(1). The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]