HOME
*





Tate Twist
In number theory and algebraic geometry, the Tate twist, 'The Tate Twist', https://ncatlab.org/nlab/show/Tate+twist named after John Tate, is an operation on Galois modules. For example, if ''K'' is a field, ''GK'' is its absolute Galois group, and ρ : ''GK'' → AutQ''p''(''V'') is a representation of ''GK'' on a finite-dimensional vector space ''V'' over the field Q''p'' of ''p''-adic numbers, then the Tate twist of ''V'', denoted ''V''(1), is the representation on the tensor product ''V''⊗Q''p''(1), where Q''p''(1) is the ''p''-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure ''Ks'' of ''K''). More generally, if ''m'' is a positive integer, the ''m''th Tate twist of ''V'', denoted ''V''(''m''), is the tensor product of ''V'' with the ''m''-fold tensor product of Q''p''(1). Denoting by Q''p''(−1) the dual representation In mathematics, if is a group and is a linear representation of it on the vector space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Tate (mathematician)
John Torrence Tate Jr. (March 13, 1925 – October 16, 2019) was an American mathematician, distinguished for many fundamental contributions in algebraic number theory, arithmetic geometry and related areas in algebraic geometry. He was awarded the Abel Prize in 2010. Biography Tate was born in Minneapolis, Minnesota. His father, John Tate Sr., was a professor of physics at the University of Minnesota, and a longtime editor of ''Physical Review''. His mother, Lois Beatrice Fossler, was a high school English teacher. Tate Jr. received his bachelor's degree in mathematics in 1946 from Harvard University, and entered the doctoral program in physics at Princeton University. He later transferred to the mathematics department and received his PhD in mathematics in 1950 after completing a doctoral dissertation, titled "Fourier analysis in number fields and Hecke's zeta functions", under the supervision of Emil Artin. Tate taught at Harvard for 36 years before joining the Univers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Module
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ''v'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Galois Group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' that fix ''K''. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When ''K'' is a perfect field, ''K''sep is the same as an algebraic closure ''K''alg of ''K''. This holds e.g. for ''K'' of characteristic zero, or ''K'' a finite field.) Examples * The absolute Galois group of an algebraically closed field is trivial. * The absolute Galois group of the real numbers is a cyclic group of two elements (complex conjugation and the identity map), since C is the separable closure of R and ''C:Rnbsp;= 2. * The absolute Galois group of a finite field ''K'' is isomorphic to the group :: \hat = \varprojlim \mathbf/n\mathbf. (For the notation, see Inverse limit.) :The Frobenius automorphism Fr is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Number
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tensor Product Of Representations
In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few. Definition Group representations If V_1, V_2 are linear representations of a group G, then their tensor product is the tensor product of vector spaces V_1 \otimes V_2 with the linear action of G uniquely determined by the condition that :g \cdot (v_1 \otimes v_2) = (g\cdot v_1) \otimes (g\cdot v_2) for all v_1\in V_1 and v_2\in V_2. Although not every element of V_1\otimes V_2 is expressible in the form v_1\otimes v_2, the universal property of the tensor product operation guarantees that this action is well defined. In the language of homomorphisms, if the actions of G on V_1 and V_2 are given by homomorphisms \Pi_1:G\rightarrow\operatorname(V_1) and \P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclotomic Character
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring , its representation space is generally denoted by (that is, it is a representation ). ''p''-adic cyclotomic character Fix a prime, and let denote the absolute Galois group of the rational numbers. The roots of unity \mu_ = \left\ form a cyclic group of order p^n, generated by any choice of a primitive th root of unity . Since all of the primitive roots in \mu_ are Galois conjugate, the Galois group G_\mathbf acts on \mu_ by automorphisms. After fixing a primitive root of unity \zeta_ generating \mu_, any element of \mu_ can be written as a power of \zeta_, where the exponent is a unique element in (\mathbf/p^n\mathbf)^\times. One can thus write \sigma.\zeta := \sigma(\zeta) = \zeta_^ where a(\sigma,n) \in (\mathbf/p^n \mathbf)^\times is the unique element as above, depending on both \sigma and p. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tate Module
In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group ''A''. Often, this construction is made in the following situation: ''G'' is a commutative group scheme over a field ''K'', ''Ks'' is the separable closure of ''K'', and ''A'' = ''G''(''Ks'') (the ''Ks''-valued points of ''G''). In this case, the Tate module of ''A'' is equipped with an action of the absolute Galois group of ''K'', and it is referred to as the Tate module of ''G''. Definition Given an abelian group ''A'' and a prime number ''p'', the ''p''-adic Tate module of ''A'' is :T_p(A)=\underset A ^n/math> where ''A'' 'pn''is the ''pn'' torsion of ''A'' (i.e. the kernel of the multiplication-by-''pn'' map), and the inverse limit is over positive integers ''n'' with transition morphisms given by the multiplication-by-''p'' map ''A'' 'p''''n''+1→ ''A'' 'pn'' Thus, the Tate module encodes all the ''p''-power torsion of ''A''. It is equipped wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]