Tangent-secant Theorem
   HOME
*



picture info

Tangent-secant Theorem
The tangent-secant theorem describes the relation of line segments created by a secant and a tangent line with the associated circle. This result is found as Proposition 36 in Book 3 of Euclid's ''Elements''. Given a secant ''g'' intersecting the circle at points G1 and G2 and a tangent ''t'' intersecting the circle at point ''T'' and given that ''g'' and ''t'' intersect at point ''P'', the following equation holds: :, PT, ^2=, PG_1, \cdot, PG_2, The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem The intersecting secant theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle. For two lines ''AD'' and ''BC'' that intersect each other in ''P'' and some circle in '' ..., the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Secant Line
Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety, in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciprocal) trigonometric function of the cosine * the secant method, a root-finding algorithm in numerical analysis, based on secant lines to graphs of functions * a secant ogive Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety, in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciproc ... in nose cone design {{mathdab sr:Секанс ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve at a point if the line passes through the point on the curve and has slope , where ''f'' is the derivative of ''f''. A similar definition applies to space curves and curves in ''n''-dimensional Euclidean space. As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a '' tangent line approximation'', the graph of the affine function that best approximates the original function at the given point. Similarly, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclid's Elements
The ''Elements'' ( grc, Στοιχεῖα ''Stoikheîa'') is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. ''Elements'' is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century. Euclid's ''Elements'' has been referred to as the most successful and influential textbook ever written. It was one of the very earliest mathematical works to be printed after the invention of the printing press and has been estimated to be second only to the Bible in the number of editions published since the first printing i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersecting Chords Theorem
The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's ''Elements''. More precisely, for two chords ''AC'' and ''BD'' intersecting in a point ''S'' the following equation holds: :, AS, \cdot, SC, =, BS, \cdot, SD, The converse is true as well, that is if for two line segments ''AC'' and ''BD'' intersecting in S the equation above holds true, then their four endpoints ''A'', ''B'', ''C'' and ''D'' lie on a common circle. Or in other words if the diagonals of a quadrilateral ''ABCD'' intersect in ''S'' and fulfill the equation above then it is a cyclic quadrilateral. The value of the two products in the chord theorem depends only on the distance of the intersection point ''S'' from the circle's center a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersecting Secants Theorem
The intersecting secant theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle. For two lines ''AD'' and ''BC'' that intersect each other in ''P'' and some circle in ''A'' and ''D'' respective ''B'' and ''C'' the following equation holds: :, PA, \cdot, PD, =, PB, \cdot, PC, The theorem follows directly from the fact, that the triangles PAC and PBD are similar. They share \angle DPC and \angle ADB=\angle ACB as they are inscribed angles over AB. The similarity yields an equation for ratios which is equivalent to the equation of the theorem given above: :\frac=\frac \Leftrightarrow , PA, \cdot, PD, =, PB, \cdot, PC, Next to the intersecting chords theorem and the tangent-secant theorem The tangent-secant theorem describes the relation of line segments created by a secant and a tangent line with the associated circle. This result is found as Proposition 36 in Book 3 of Euclid's ''Elements''. Giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of A Point
In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. Specifically, the power \Pi(P) of a point P with respect to a circle c with center O and radius r is defined by : \Pi(P)=, PO, ^2 - r^2. If P is ''outside'' the circle, then \Pi(P)>0, if P is ''on'' the circle, then \Pi(P)=0 and if P is ''inside'' the circle, then \Pi(P)<0. Due to the Pythagorean theorem the number \Pi(P) has the simple geometric meanings shown in the diagram: For a point P outside the circle \Pi(P) is the squared tangential distance , PT, of point P to the circle c. Points with equal power,