TRPML1
Mucolipin-1 also known as TRPML1 (transient receptor potential cation channel, mucolipin subfamily, member 1) is a protein that in humans is encoded by the ''MCOLN1'' gene. It is a member of the small family of the TRPML channels, a subgroup of the large protein family of TRP ion channels. TRPML1 is a 65 kDa protein associated with mucolipidosis type IV. Its predicted structure includes six transmembrane domains, a transient receptor potential (TRP) cation-channel domain, and an internal channel pore. TRPML1 is believed to channel iron ions across the endosome/lysosome membrane into the cell and so its malfunction causes cellular iron deficiency. It is important in lysosome function and plays a part in processes such as vesicular trafficking, exocytosis and autophagy. Ligands ;Agonists * ML-SA1 * MK6-83 See also * transient receptor potential cation channel, mucolipin subfamily, member 2 ( MCOLN2) * transient receptor potential cation channel, mucolipin subfamily, member ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ML-SA1
ML-SA1 is a chemical compound which acts as an "agonist" (i.e. channel opener) of the TRPML family of calcium channels. It has mainly been studied for its role in activating TRPML1 channels, although it also shows activity at the less studied TRPML2 and TRPML3 subtypes. TRPML1 is important for the function of lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane pr ...s, and ML-SA1 has been used to study several disorders resulting from impaired lysosome function, including mucolipidosis type IV and Niemann-Pick's disease type C, as well as other conditions such as stroke and Alzheimer's disease. References {{Transient receptor potential channel modulators Phthalimides Amides ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
TRPML
TRPML (transient receptor potential cation channel, mucolipin subfamily) comprises a group of three evolutionarily related proteins that belongs to the large family of transient receptor potential ion channels. The three proteins TRPML1, TRPML2 and TRPML3 are encoded by the mucolipin-1 ('' MCOLN1''), mucolipin-2 ('' MCOLN2'') and mucolipin-3 ('' MCOLN3'') genes, respectively. The three members of the TRPML ("ML" for mucolipin) sub-family are not extremely well characterized. TRPML1 is known to be localized in late endosomes. This subunit also contains a lipase domain between its S1 and S2 segments. While the function of this domain is unknown it has been proposed that it is involved in channel regulation. Physiological studies have described TRPML1 channels as proton leak channels in lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transient Receptor Potential Channel
Transient receptor potential channels (TRP channels) are a group of ion channels located mostly on the plasma membrane of numerous animal cell types. Most of these are grouped into two broad groups: Group 1 includes TRPC ( "C" for canonical), TRPV ("V" for vanilloid), TRPVL ("VL" for vanilloid-like), TRPM ("M" for melastatin), TRPS ("S" for soromelastatin), TRPN ("N" for no mechanoreceptor potential C), and TRPA ("A" for ankyrin). Group 2 consists of TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Other less-well categorized TRP channels exist, including yeast channels and a number of Group 1 and Group 2 channels present in non-animals. Many of these channels mediate a variety of sensations such as pain, temperature, different kinds of tastes, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold. Some TRP channels are activated by molecules found in spices like garlic (allicin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MCOLN3
Mucolipin-3 also known as TRPML3 (transient receptor potential cation channel, mucolipin subfamily, member 3) is a protein that in humans is encoded by the ''MCOLN3'' gene. It is a member of the small family of the TRPML channels, a subgroup of the large protein family of TRP ion channels. Gene In human, the ''MCOLN3'' gene resides on the short arm of chromosome 1 at 1p22.3. The gene is split in 12 exons, which entail the open reading frame of 1659 nucleotides. The encoded protein, TRPML3, has 553 amino acid with a predicted molecular weight of ≈64 kDa. Computational analyses of the secondary structure predict the presence of six transmembrane domains, an ion transport motif (PF00520) and a transient receptor potential motif (PS50272). In the mouse, ''Mcoln3'', is located on the distal end of chromosome 3 at cytogenetic band qH2. Human and mouse TRPML3 proteins share 91% sequence identity. All vertebrate species, for which a genomic sequence is available, harbor the ''MCOL ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mucolipidosis Type IV
Mucolipidosis type IV (ML IV, ganglioside sialidase deficiency, or ML4) is an autosomal recessive lysosomal storage disorder. Individuals with the disorder have many symptoms including delayed psychomotor development and various ocular aberrations. The disorder is caused by mutations in the MCOLN1 gene, which encodes a non-selective cation channel, mucolipin1. These mutations disrupt cellular functions and lead to a neurodevelopmental disorder through an unknown mechanism. Researchers dispute the physiological role of the protein product and which ion it transports. Signs and symptoms Most patients with ML IV show psychomotor retardation (i.e., delayed development of movement and coordination), corneal opacity, retinal degeneration and other ophthalmological abnormalities. Other symptoms include agenesis of the corpus callosum, iron deficiency resulting from an absence of acid secretion in the stomach, achlorhydria. Achlorhydria in these patients results in an increase in blo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MK6-83
MK6-83 is a chemical compound which acts as a channel opener for the TRPML family of calcium channels, with moderate selectivity for TRPML1 over the related TRPML2 and TRPML3 subtypes. See also * ML-SI3 * ML2-SA1 * SN-2 SN-2 is a chemical compound which acts as an "agonist" (i.e. channel opener) for the TRPML3 calcium channel, with high selectivity for TRPML3 and no significant activity at the related TRPML1 and TRPML2 channels. It has demonstrated antiviral ... References {{Transient receptor potential channel modulators 1-Piperidinyl compounds Sulfonamides Thiophenes Anilines ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Endosome
Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membrane can follow this pathway all the way to lysosomes for degradation or can be recycled back to the cell membrane in the endocytic cycle. Molecules are also transported to endosomes from the trans Golgi network and either continue to lysosomes or recycle back to the Golgi apparatus. Endosomes can be classified as early, sorting, or late depending on their stage post internalization. Endosomes represent a major sorting compartment of the endomembrane system in cells. Function Endosomes provide an environment for material to be sorted before it reaches the degradative lysosome. For example, low-density lipoprotein (LDL) is taken into the cell by binding to the LDL receptor at the cell surface. Upon reaching early endosomes, the LDL dissociates ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lysosome
A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane proteins, and its lumenal proteins. The lumen's pH (~4.5–5.0) is optimal for the enzymes involved in hydrolysis, analogous to the activity of the stomach. Besides degradation of polymers, the lysosome is involved in various cell processes, including secretion, plasma membrane repair, apoptosis, cell signaling, and energy metabolism. Lysosomes act as the waste disposal system of the cell by digesting used materials in the cytoplasm, from both inside and outside the cell. Material from outside the cell is taken up through endocytosis, while material from the inside of the cell is digested through autophagy. The sizes of the organelles vary greatly—the larger ones can be more than 10 times the size of the smaller ones. They were discov ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vesicular Trafficking
Membrane vesicle trafficking in eukaryotic animal cells involves movement of biochemical signal molecules from synthesis-and-packaging locations in the Golgi body to specific release locations on the inside of the plasma membrane of the secretory cell. It takes place in the form of Golgi membrane-bound micro-sized vesicles, termed membrane vesicles (MVs). In this process, the packed cellular products are released or secreted outside the cell, across its plasma membrane. On the other hand, the vesicular membrane is retained and recycled by the secretory cells. This phenomenon has a major role in synaptic neurotransmission, endocrine secretion, mucous secretion, granular-product secretion by neutrophils, and other phenomena. The scientists behind this discovery were awarded Nobel prize for the year 2013. In prokaryotic, gram-negative bacterial cells, membrane vesicle trafficking is mediated through bacterial outer membrane bounded nano-sized vesicles, called bacterial outer membrane ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exocytosis
Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, endocytosis, are used by all cells because most chemical substances important to them are large polar molecules that cannot pass through the hydrophobic portion of the cell membrane by passive means. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structure at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell. In exocytosis, membrane-bound secretory vesicles are carried to the cell membrane, where they ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |