T-15 (reactor)
   HOME
*





T-15 (reactor)
The T-15 (or Tokamak-15) is a Russian (previously Soviet) nuclear fusion research reactor located at the Kurchatov Institute, which is based on the (Soviet-invented) tokamak design. It was the first industrial prototype fusion reactor to use superconducting magnets to control the plasma. These enormous superconducting magnets confined the plasma the reactor produced, but failed to sustain it for more than just a few seconds. Despite not being immediately applicable, this new technological advancement proved to the USSR that they were on the right path. In the original (circular cross-section with limiter) shape, a toroidal chamber design, it had a major radius of and minor radius . The T-15 achieved creating its first thermonuclear plasma in 1988 and the reactor remained operational until 1995. The plasma created was thought to solve a number of issues engineers have struggled with in the past. This combined with the USSR's desire for cheaper energy ensured the continuing progress ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tokamak
A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. , it was the leading candidate for a practical fusion reactor. Tokamaks were initially conceptualized in the 1950s by Soviet physicists Igor Tamm and Andrei Sakharov, inspired by a letter by Oleg Lavrentiev. The first working tokamak was attributed to the work of Natan Yavlinsky on the T-1 in 1958. It had been demonstrated that a stable plasma equilibrium requires magnetic field lines that wind around the torus in a helix. Devices like the z-pinch and stellarator had attempted this, but demonstrated serious instabilities. It was the development of the concept now known as the safety factor (labelled ''q'' in mathematical notation) that guided tokamak development; by arranging the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tokamaks
A tokamak (; russian: токамáк; otk, 𐱃𐰸𐰢𐰴, Toḳamaḳ) is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. , it was the leading candidate for a practical fusion reactor. Tokamaks were initially conceptualized in the 1950s by Soviet physicists Igor Tamm and Andrei Sakharov, inspired by a letter by Oleg Lavrentiev. The first working tokamak was attributed to the work of Natan Yavlinsky on the T-1 in 1958. It had been demonstrated that a stable plasma equilibrium requires magnetic field lines that wind around the torus in a helix. Devices like the z-pinch and stellarator had attempted this, but demonstrated serious instabilities. It was the development of the concept now known as the safety factor (labelled ''q'' in mathematical notation) that guided tokamak development; by arranging ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Fusion–fission Hybrid
Hybrid nuclear fusion–fission (hybrid nuclear power) is a proposed means of generating power by use of a combination of nuclear fusion and fission processes. The basic idea is to use high-energy fast neutrons from a fusion reactor to trigger fission in non-fissile fuels like U-238 or Th-232. Each neutron can trigger several fission events, multiplying the energy released by each fusion reaction hundreds of times, but there is no self-sustaining chain reaction from fission. This would not only make fusion designs more economical in power terms, but also be able to burn fuels that were not suitable for use in conventional fission plants, even their nuclear waste. In general terms, the hybrid is similar in concept to the fast breeder reactor, which uses a compact high-energy fission core in place of the hybrid's fusion core. Another similar concept is the accelerator-driven subcritical reactor, which uses a particle accelerator to provide the neutrons instead of nuclear reactions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T-15 Toroidal Winding And Poloidal Field Coils
T15 or T-15 may refer to: Aerospace * T15 (satellite), a DirecTV communications satellite * Marlin Airport, Texas, United States * Slingsby T.15 Gull III, a British glider * Soyuz T-15, a crewed spaceflight Automobiles * Chery T15, a Chinese concept car * Simca-Gordini T15, a French racing car * Triumph T15 Terrier, a motorcycle Railway stations * Minami-Sunamachi Station, Tokyo, Japan * Nangō-Jūsan-Chōme Station, Sapporo, Hokkaido, Japan * Nijō Station (Kyoto), Japan * Sanuki-Tsuda Station, Kagawa, Japan * Sekime-Takadono Station, Osaka, Japan * Yagoto Station, Nagoya, Aichi, Japan Weapons and armour * Safir T-15, a rifle * Škoda T-15, a prototype German-Czechoslovakian light tank * T-15 torpedo, a Soviet nuclear torpedo * T-15 Armata, a Russian infantry fighting vehicle * Vickers T-15 light tank, of the Belgian Army Other uses * T-15 (reactor), a Russian fusion research reactor * Estonian national road 15 * T15 road (Tanzania) * * Little Swanport language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T-10 (tokamak)
T10 may refer to: Aircraft * AmeriPlanes Mitchell Wing T-10, an American ultralight aircraft * Auster T.10, a British observation aircraft * Carmier Dupoy T.10, a French sport plane * Sukhoi T-10, a Soviet prototype jet fighter Anatomy * Tenth thoracic vertebra * Thoracic spinal nerve 10 Automobiles * Suzuki T10, a motorcycle * Toyota Corona (T10), a sedan * Triumph T10, a scooter Rail and transit Lines * Île-de-France tramway Line 10, France * T10 line, of the Stockholm Metro Rolling stock * Prussian T 10, a Prussian steam locomotive * T-10, a former Federal Railroad Administration track geometry car based on the Budd SPV-2000 Stations * Bus Center-Mae Station, Sapporo, Hokkaido, Japan * Higashiyama Station (Kyoto), Japan * Hiketa Station, Higashikagawa, Kagawa Prefecture, Japan * Nihombashi Station, Tokyo, Japan * Tsurumai Station, Nagoya, Aichi Prefecture, Japan Sports * Abu Dhabi T10, a 10-over cricket league * T10 cricket, a 90-minute format of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International Thermonuclear Experimental Reactor
ITER (initially the International Thermonuclear Experimental Reactor, ''iter'' meaning "the way" or "the path" in Latin) is an international nuclear fusion research and engineering megaproject aimed at creating energy by replicating, on Earth, the fusion processes of the Sun. Upon completion of construction of the main reactor and first plasma, planned for late 2025, it will be the world's largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor. It is being built next to the Cadarache facility in southern France. ITER will be the largest of more than 100 fusion reactors built since the 1950s, with ten times the plasma volume of any other tokamak operating today. The long-term goal of fusion research is to generate electricity. ITER's stated purpose is scientific research, and technological demonstration of a large fusion reactor, without electricity generation. ITER's goals are to achieve enough fusion to produce 10 ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divertor
In nuclear fusion power research, a divertor is a device within a tokamak or a stellarator that allows the online removal of waste material from the plasma while the reactor is still operating. This allows control over the buildup of fusion products in the fuel, and removes impurities in the plasma that have entered into it from the vessel lining. The divertor was initially introduced during the earliest studies of fusion power systems in the 1950s. It was realized early on that successful fusion would result in heavier ions being created and left in the fuel (the so-called "fusion ash"). These impurities were responsible for the loss of heat, and caused other effects that made it more difficult to keep the reaction going. The divertor was proposed as a solution to this problem. Operating on the same principle as a mass spectrometer, the plasma passes through the divertor region where heavier ions are flung out of the fuel mass by centrifugal force, colliding with some sort of ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moscow
Moscow ( , US chiefly ; rus, links=no, Москва, r=Moskva, p=mɐskˈva, a=Москва.ogg) is the capital and largest city of Russia. The city stands on the Moskva River in Central Russia, with a population estimated at 13.0 million residents within the city limits, over 17 million residents in the urban area, and over 21.5 million residents in the metropolitan area. The city covers an area of , while the urban area covers , and the metropolitan area covers over . Moscow is among the world's largest cities; being the most populous city entirely in Europe, the largest urban and metropolitan area in Europe, and the largest city by land area on the European continent. First documented in 1147, Moscow grew to become a prosperous and powerful city that served as the capital of the Grand Duchy that bears its name. When the Grand Duchy of Moscow evolved into the Tsardom of Russia, Moscow remained the political and economic center for most of the Tsardom's history. When th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma (physics)
Plasma () 1, where \nu_ is the electron gyrofrequency and \nu_ is the electron collision rate. It is often the case that the electrons are magnetized while the ions are not. Magnetized plasmas are ''anisotropic'', meaning that their properties in the direction parallel to the magnetic field are different from those perpendicular to it. While electric fields in plasmas are usually small due to the plasma high conductivity, the electric field associated with a plasma moving with velocity \mathbf in the magnetic field \mathbf is given by the usual Lorentz force, Lorentz formula \mathbf = -\mathbf\times\mathbf, and is not affected by Debye shielding. Mathematical descriptions To completely describe the state of a plasma, all of the particle locations and velocities that describe the electromagnetic field in the plasma region would need to be written down. However, it is generally not practical or necessary to keep track of all the particles in a plasma. Therefore, plasma physicist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superconducting
Superconductivity is a set of physical properties observed in certain materials where Electrical resistance and conductance, electrical resistance vanishes and magnetic field, magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic electrical conductor, conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic Phase transition, critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source. The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete ejection of magne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]