Symmetrization Methods
   HOME
*



picture info

Symmetrization Methods
In mathematics the symmetrization methods are algorithms of transforming a set A\subset \mathbb^n to a ball B\subset \mathbb^n with equal volume \operatorname(B)=\operatorname(A) and centered at the origin. ''B'' is called the symmetrized version of ''A'', usually denoted A^. These algorithms show up in solving the classical isoperimetric inequality problem, which asks: Given all two-dimensional shapes of a given area, which of them has the minimal perimeter (for details see Isoperimetric inequality). The conjectured answer was the disk and Steiner in 1838 showed this to be true using the Steiner symmetrization method (described below). From this many other isoperimetric problems sprung and other symmetrization algorithms. For example, Rayleigh's conjecture is that the first eigenvalue of the Dirichlet problem is minimized for the ball (see Rayleigh–Faber–Krahn inequality for details). Another problem is that the Newtonian capacity of a set A is minimized by A^ and this was pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Jakob Steiner
Jakob Steiner (18 March 1796 – 1 April 1863) was a Swiss mathematician who worked primarily in geometry. Life Steiner was born in the village of Utzenstorf, Canton of Bern. At 18, he became a pupil of Heinrich Pestalozzi and afterwards studied at Heidelberg. Then, he went to Berlin, earning a livelihood there, as in Heidelberg, by tutoring. Here he became acquainted with A. L. Crelle, who, encouraged by his ability and by that of Niels Henrik Abel, then also staying at Berlin, founded his famous ''Journal'' (1826). After Steiner's publication (1832) of his ''Systematische Entwickelungen'' he received, through Carl Gustav Jacob Jacobi, who was then professor at Königsberg University, and earned an honorary degree there; and through the influence of Jacobi and of the brothers Alexander and Wilhelm von Humboldt a new chair of geometry was founded for him at Berlin (1834). This he occupied until his death in Bern on 1 April 1863. He was described by Thomas Hirst as follows: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Capacity Of A Set
In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure, which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge. More precisely, it is the capacitance of the set: the total charge a set can hold while maintaining a given potential energy. The potential energy is computed with respect to an idealized ground at infinity for the harmonic or Newtonian capacity, and with respect to a surface for the condenser capacity. Historical note The notion of capacity of a set and of "capacitable" set was introduced by Gustave Choquet in 1950: for a detailed account, see reference . Definitions Condenser capacity Let Σ be a closed, smooth, (''n'' − 1)-dimensional hypersurface in ''n''-dimensional Euclidean space ℝ''n'', ''n'' ≥ 3; ''K'' will denote the ''n''-dimensional compact (i.e., closed and bounded) set of which Σ is the b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polarization Symmetrization
Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables *Polarization identity, expresses an inner product in terms of its associated norm *Polarization (Lie algebra) Physical sciences *Polarization (waves), the ability of waves to oscillate in more than one direction, in particular polarization of light, responsible for example for the glare-reducing effect of polarized sunglasses **Polarization (antenna), the state of polarization (in the above sense) of electromagnetic waves transmitted by or received by a radio antenna *Dielectric polarization, charge separation in insulating materials: **Polarization density, volume dielectric polarization **Dipolar polarization, orientation of permanent dipoles **Ionic polarization, displacement of ions in a crystal **Maxwell–W ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circular Symmetrization
Circular may refer to: * The shape of a circle * ''Circular'' (album), a 2006 album by Spanish singer Vega * Circular letter (other) ** Flyer (pamphlet), a form of advertisement * Circular reasoning, a type of logical fallacy * Circular reference * Government circular, a written statement of government policy See also * Circular DNA (other) * Circular Line (other) * Circularity (other) Circularity may refer to: *Circular definition *Circular economy *Circular reasoning, also known as circular logic **Begging the question *Circularity of an object or roundness *A circularity ratio as a compactness measure of a shape *An assumptio ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperplane
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In different settings, hyperplanes may have different properties. For instance, a hyperplane of an -dimensional affine space is a flat subset with dimension and it separates the space into two half spaces. While a hyperplane of an -dimensional projective space does not have this property. The difference in dimension between a subspace and its ambient space is known as the codimension of with respect to . Therefore, a necessary and sufficient condition for to be a hyperplane in is for to have codimension one in . Technical description In geometry, a hyperplane of an ''n''-dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Steiner Symmetrization
Steiner may refer to: Felix Steiner, German Waffen SS-commander Surname *Steiner (surname) Other uses *Steiner, Michigan, a village in the United States *Steiner, Mississippi *Steiner Studios, film and television production studio in New York City * Steiner's theorem, used to determine the mass moment of inertia around an axis. Also known as parallel axis theorem See also *Poncelet–Steiner theorem *Steiner point (other) *Steiner surface *Steiner system, a type of block design *Steiner tree *Waldorf education, also called Steiner education *The Steiner Brothers The Steiner Brothers are an American professional wrestling tag team consisting of brothers Robert "Rick Steiner" Rechsteiner and Scott "Scott Steiner" Rechsteiner. The brothers wrestled as amateurs at the University of Michigan. The team ma ...
, the professional wrestling "tag team" of real-life brothers Rick and Scott Steiner {{disambiguation, geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Distance
In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu. Informally, two sets are close in the Hausdorff distance if every point of either set is close to some point of the other set. The Hausdorff distance is the longest distance you can be forced to travel by an adversary who chooses a point in one of the two sets, from where you then must travel to the other set. In other words, it is the greatest of all the distances from a point in one set to the closest point in the other set. This distance was first introduced by Hausdorff in his book ''Grundzüge der Mengenlehre'', first published in 1914, although a very close relative appeared in the doctoral thesis of Maurice Fréchet in 1906, in his study of the space of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Decreasing Rearrangement
In mathematics, the symmetric decreasing rearrangement of a function is a function which is symmetric and decreasing, and whose level sets are of the same size as those of the original function. Definition for sets Given a measurable set, A, in \R^n, one defines the ''symmetric rearrangement'' of A, called A^*, as the ball centered at the origin, whose volume (Lebesgue measure) is the same as that of the set A. An equivalent definition is A^* = \left\, where \omega_n is the volume of the unit ball and where , A, is the volume of A. Definition for functions The rearrangement of a non-negative, measurable real-valued function f whose level sets f^(y) (for y \in \R_) have finite measure is f^*(x) = \int_0^\infty \mathbb_(x) \, dt, where \mathbb_A denotes the indicator function of the set A. In words, the value of f^*(x) gives the height t for which the radius of the symmetric rearrangement of \ is equal to x. We have the following motivation for this definition. Because the iden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rayleigh–Faber–Krahn Inequality
In spectral geometry, the Rayleigh–Faber–Krahn inequality, named after its conjecturer, Lord Rayleigh, and two individuals who independently proved the conjecture, G. Faber and Edgar Krahn, is an inequality concerning the lowest Dirichlet eigenvalue of the Laplace operator on a bounded domain in \mathbb^n, n \ge 2. It states that the first Dirichlet eigenvalue is no less than the corresponding Dirichlet eigenvalue of a Euclidean ball having the same volume. Furthermore, the inequality is rigid in the sense that if the first Dirichlet eigenvalue is equal to that of the corresponding ball, then the domain must actually be a ball. In the case of n=2, the inequality essentially states that among all drums of equal area, the circular drum (uniquely) has the lowest voice. More generally, the Faber–Krahn inequality holds in any Riemannian manifold in which the isoperimetric inequality holds. In particular, according to Cartan–Hadamard conjecture, it should hold in all simply con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Problem
In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the problem can be stated as follows: :Given a function ''f'' that has values everywhere on the boundary of a region in R''n'', is there a unique continuous function ''u'' twice continuously differentiable in the interior and continuous on the boundary, such that ''u'' is harmonic in the interior and ''u'' = ''f'' on the boundary? This requirement is called the Dirichlet boundary condition. The main issue is to prove the existence of a solution; uniqueness can be proved using the maximum principle. History The Dirichlet problem goes back to George Green, who studied the problem on general domains with general boundary condi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]