Stieltjes Moment Problem
   HOME
*





Stieltjes Moment Problem
In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions for a sequence (''m''0, ''m''1, ''m''2, ...) to be of the form :m_n = \int_0^\infty x^n\,d\mu(x) for some measure ''μ''. If such a function ''μ'' exists, one asks whether it is unique. The essential difference between this and other well-known moment problems is that this is on a half-line 0, ∞),_whereas_in_the_0, ∞),_whereas_in_the_Hausdorff_moment_problem">/nowiki>0, ∞),_whereas_in_the_Hausdorff_moment_problem_one_considers_a_Interval_(mathematics)#Terminology.html" "title="Hausdorff_moment_problem.html" ;"title="/nowiki>0, ∞), whereas in the Hausdorff moment problem">/nowiki>0, ∞), whereas in the Hausdorff moment problem one considers a Interval_(mathematics)#Terminology">bounded interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment Problem
In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure ''μ'' to the sequences of moments :m_n = \int_^\infty x^n \,d\mu(x)\,. More generally, one may consider :m_n = \int_^\infty M_n(x) \,d\mu(x)\,. for an arbitrary sequence of functions ''M''''n''. Introduction In the classical setting, μ is a measure on the real line, and ''M'' is the sequence . In this form the question appears in probability theory, asking whether there is a probability measure having specified mean, variance and so on, and whether it is unique. There are three named classical moment problems: the Hamburger moment problem in which the support of μ is allowed to be the whole real line; the Stieltjes moment problem, for , +∞); and the Hausdorff moment problem for a bounded interval, which without loss of generality may be taken as , 1 Existence A sequence of numbers ''m''''n'' is the sequence of moments of a measure ''μ'' if an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Joannes Stieltjes
Thomas Joannes Stieltjes (, 29 December 1856 – 31 December 1894) was a Dutch mathematician. He was a pioneer in the field of moment problems and contributed to the study of continued fractions. The Thomas Stieltjes Institute for Mathematics at Leiden University, dissolved in 2011, was named after him, as is the Riemann–Stieltjes integral. Biography Stieltjes was born in Zwolle on 29 December 1856. His father (who had the same first names) was a civil engineer and politician. Stieltjes Sr. was responsible for the construction of various harbours around Rotterdam, and also seated in the Dutch parliament. Stieltjes Jr. went to university at the Polytechnical School in Delft in 1873. Instead of attending lectures, he spent his student years reading the works of Gauss and Jacobi — the consequence of this being he failed his examinations. There were 2 further failures (in 1875 and 1876), and his father despaired. His father was friends with H. G. van de Sande Bakhuyzen (who was t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called the ''length'' of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers (the positions of elements in the sequence) to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an ''arbitrary'' index set. For example, (M, A, R, Y) is a sequence of letters with the letter 'M' first and 'Y' last. This sequence differs from (A, R, M, Y). Also, the sequence (1, 1, 2, 3, 5, 8), which contains the number 1 at two different positions, is a valid sequence. Sequences can be ''finite'', as in these examples, or ''infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hausdorff Moment Problem
In mathematics, the Hausdorff moment problem, named after Felix Hausdorff, asks for necessary and sufficient conditions that a given sequence be the sequence of moments :m_n = \int_0^1 x^n\,d\mu(x) of some Borel measure supported on the closed unit interval . In the case , this is equivalent to the existence of a random variable supported on , such that . The essential difference between this and other well-known moment problems is that this is on a bounded interval, whereas in the Stieltjes moment problem one considers a half-line , and in the Hamburger moment problem one considers the whole line . The Stieltjes moment problems and the Hamburger moment problems, if they are solvable, may have infinitely many solutions (indeterminate moment problem) whereas a Hausdorff moment problem always has a unique solution if it is solvable (determinate moment problem). In the indeterminate moment problem case, there are infinite measures corresponding to the same prescribed moment ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interval (mathematics)
In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other examples of intervals are the set of numbers such that , the set of all real numbers \R, the set of nonnegative real numbers, the set of positive real numbers, the empty set, and any singleton (set of one element). Real intervals play an important role in the theory of integration, because they are the simplest sets whose "length" (or "measure" or "size") is easy to define. The concept of measure can then be extended to more complicated sets of real numbers, leading to the Borel measure and eventually to the Lebesgue measure. Intervals are central to interval arithmetic, a general numerical computing technique that automatically provides guaranteed enclosures for arbitrary formulas, even in the presence of uncertainties, mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamburger Moment Problem
In mathematics, the Hamburger moment problem, named after Hans Ludwig Hamburger, is formulated as follows: given a sequence (''m''0, ''m''1, ''m''2, ...), does there exist a positive Borel measure ''μ'' (for instance, the measure determined by the cumulative distribution function of a random variable) on the real line such that :m_n = \int_^\infty x^n\,d \mu(x) \text In other words, an affirmative answer to the problem means that (''m''0, ''m''1, ''m''2, ...) is the sequence of moments of some positive Borel measure ''μ''. The Stieltjes moment problem, Vorobyev moment problem, and the Hausdorff moment problem are similar but replace the real line by ,+\infty) (Stieltjes and Vorobyev; but Vorobyev formulates the problem in the terms of matrix theory), or a bounded interval (Hausdorff). Characterization The Hamburger moment problem is solvable (that is, (''m''''n'') is a sequence of moments) if and only if the corresponding Hankel kernel on the nonnegative integers : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Carleman's Condition
In mathematics, particularly, in analysis, Carleman's condition gives a sufficient condition for the determinacy of the moment problem. That is, if a measure \mu satisfies Carleman's condition, there is no other measure \nu having the same moments as \mu. The condition was discovered by Torsten Carleman in 1922. Hamburger moment problem For the Hamburger moment problem (the moment problem on the whole real line), the theorem states the following: Let \mu be a measure on \R such that all the moments m_n = \int_^ x^n \, d\mu(x)~, \quad n = 0,1,2,\cdots are finite. If \sum_^\infty m_^ = + \infty, then the moment problem for (m_n) is ''determinate''; that is, \mu is the only measure on \R with (m_n) as its sequence of moments. Stieltjes moment problem For the Stieltjes moment problem In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions for a sequence (''m''0, ''m''1, ''m''2, ...) to be of the form :m_n = \in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Probability Problems
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', (Vol 1), 3rd Ed, (1968), Wiley, . The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Moment (mathematics)
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. The mathematical concept is closely related to the concept of moment in physics. For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from to ) uniquely determines the distribution (Hausdorff moment problem). The same is not true on unbounded intervals (Hamburger moment problem). In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think systematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]