Smallest Enclosing Rectangle
   HOME



picture info

Smallest Enclosing Rectangle
In computational geometry, the smallest enclosing box problem is that of finding the Minimum bounding box#Arbitrarily oriented minimum bounding box, oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, ''etc.'' of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is straightforward to find the smallest enclosing box that has sides parallel to the coordinate axes; the difficult part of the problem is to determine the orientation of the box. Two dimensions For the convex polygon, a linear time algorithm for the minimum-area enclosing rectangle is known. It is based on the observation that a side of a minimum-area enclosing box must be collinear with a side of the convex polygon. It is possible to enumerate boxes of this kind in linear time with the approach called rotating calipers by Godfried Toussaint in 1983.. The same approach is ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Godfried Toussaint
Godfried Theodore Patrick Toussaint (1944 – July 2019) was a Canadian computer scientist, a professor of computer science, and the head of the Computer Science Program at New York University Abu Dhabi (NYUAD) in Abu Dhabi, United Arab Emirates. He is considered to be the father of computational geometry in Canada. He did research on various aspects of computational geometry, discrete geometry, and their applications: pattern recognition ( k-nearest neighbor algorithm, cluster analysis), motion planning, visualization (computer graphics), knot theory ( stuck unknot problem), linkage (mechanical) reconfiguration, the art gallery problem, polygon triangulation, the largest empty circle problem, unimodality ( unimodal function), and others. Other interests included meander (art), compass and straightedge constructions, instance-based learning, music information retrieval, and computational music theory. He was a co-founder of the Annual ACM Symposium on Computational Geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smallest Enclosing Ball
In mathematics, given a non-empty set of objects of finite extension in d-dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is a d-dimensional solid sphere containing all of these objects. Used in computer graphics and computational geometry, a bounding sphere is a special type of bounding volume. There are several fast and simple bounding sphere construction algorithms with a high practical value in real-time computer graphics applications. In statistics and operations research, the objects are typically points, and generally the sphere of interest is the minimal bounding sphere, that is, the sphere with minimal radius among all bounding spheres. It may be proven that such a sphere is unique: If there are two of them, then the objects in question lie within their intersection. But an intersection of two non-coinciding spheres of equal radius is contained in a sphere of smaller radius. The problem of computing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unit Cube
A unit cube, more formally a cube of side 1, is a cube whose sides are 1 unit long.. See in particulap. 671. The volume of a 3-dimensional unit cube is 1 cubic unit, and its total surface area is 6 square units.. Unit hypercube The term ''unit cube'' or unit hypercube is also used for hypercubes, or "cubes" in ''n''-dimensional spaces, for values of ''n'' other than 3 and edge length 1. Sometimes the term "unit cube" refers in specific to the set , 1sup>''n'' of all ''n''-tuples of numbers in the interval , 1 The length of the longest diagonal of a unit hypercube of ''n'' dimensions is \sqrt n, the square root of ''n'' and the (Euclidean) length of the vector (1,1,1,....1,1) in ''n''-dimensional space. See also * Doubling the cube * ''k''-cell * Robbins constant, the average distance between two random points in a unit cube * Tychonoff cube, an infinite-dimensional analogue of the unit cube *Unit square *Unit sphere In mathematics, a unit sphere is a sph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Tetrahedron
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tetrahedron is the simplest of all the ordinary convex polytope, convex polyhedra. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean geometry, Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid (geometry), pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron, the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such net (polyhedron), nets. For any tetrahedron there exists a sphere (called th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetraeder Animation With Cube
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra. The tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex, and may thus also be called a 3-simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron, the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid". Like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. It has two such nets. For any tetrahedron there exists a sphere (called the circumsphere) on which all four vertices lie, and another sphere (the insphere) tangent to the tetrahedron's faces. Reg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GitHub
GitHub () is a Proprietary software, proprietary developer platform that allows developers to create, store, manage, and share their code. It uses Git to provide distributed version control and GitHub itself provides access control, bug tracking system, bug tracking, software feature requests, task management, continuous integration, and wikis for every project. Headquartered in California, GitHub, Inc. has been a subsidiary of Microsoft since 2018. It is commonly used to host open source software development projects. GitHub reported having over 100 million developers and more than 420 million Repository (version control), repositories, including at least 28 million public repositories. It is the world's largest source code host Over five billion developer contributions were made to more than 500 million open source projects in 2024. About Founding The development of the GitHub platform began on October 19, 2005. The site was launched in April 2008 by Tom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coreset
In computational geometry, a coreset of an input set is a subset of points, such that solving a problem on the coreset provably yields similar results as solving the problem on the entire point set, for some given family of problems. Coresets are commonly used in Mathematical optimization, Cluster analysis and Range Queries to reduce computational complexity while maintaining high accuracy. They allow algorithms to operate efficiently on large datasets by replacing the original data with a significantly smaller representative subset. Many natural geometric optimization problems have coresets that approximate an optimal solution to within a factor of , that can be found quickly (in linear time or near-linear time), and that have size bounded by a function of independent of the input size, where is an arbitrary positive number. When this is the case, one obtains a linear-time or near-linear time approximation scheme, based on the idea of finding a coreset and then applying an exact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Joseph O'Rourke (professor)
Joseph O'Rourke is the Spencer T. and Ann W. Olin Professor of Computer Science at Smith College and the founding chair of the Smith computer science department. His main research interest is computational geometry. One of O'Rourke's early results was an algorithm for finding the minimum bounding box of a point set in three dimensions when the box is not required to be axis-aligned. The problem is made difficult by the fact that the optimal box may not share any of its face planes with the convex hull of the point set. Nevertheless, O'Rourke found an algorithm for this problem with running time O(n^3). In 1985, O'Rourke was both the local arrangements chair and the program chair of the first annual Symposium on Computational Geometry. He was formerly the arXiv moderator for computational geometry and discrete mathematics Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotating Calipers
In computational geometry, the method of rotating calipers is an algorithm design technique that can be used to solve optimization problems including finding the width or diameter (computational geometry), diameter of a set of points. The method is so named because the idea is analogous to rotating a spring-loaded vernier caliper around the outside of a convex polygon. Every time one blade of the caliper lies flat against an edge of the polygon, it forms an antipodal point, antipodal pair with the point or edge touching the opposite blade. The complete "rotation" of the caliper around the polygon detects all antipodal pairs; the set of all pairs, viewed as a graph, forms a thrackle. The method of rotating calipers can be interpreted as the Duality (projective geometry), projective dual of a sweep line algorithm in which the sweep is across slopes of lines rather than across - or -coordinates of points. History The rotating calipers method was first used in the dissertation of M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimum Bounding Box
In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. In the two-dimensional case it is called the ''minimum bounding rectangle''. Axis-aligned minimum bounding box The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box are parallel to the (Cartesian) coordinate axes. It is the Cartesian product of ''N'' intervals each of which is defined by the minimal and maximal value o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Communications Of The ACM
''Communications of the ACM'' (''CACM'') is the monthly journal of the Association for Computing Machinery (ACM). History It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with backgrounds in all areas of computer science and information systems. The focus is on the practical implications of advances in information technology and associated management issues; ACM also publishes a variety of more theoretical journals. The magazine straddles the boundary of a science magazine, trade magazine, and a scientific journal. While the content is subject to peer review, the articles published are often summaries of research that may also be published elsewhere. Material published must be accessible and relevant to a broad readership. From 1960 onward, ''CACM'' also published algorithms, expressed in ALGOL. The collection of algorithms later became known as the Collected Algorithms of the ACM. CA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]