Rotating Calipers
In computational geometry, the method of rotating calipers is an algorithm design technique that can be used to solve optimization problems including finding the width or diameter of a set of points. The method is so named because the idea is analogous to rotating a spring-loaded vernier caliper around the outside of a convex polygon. Every time one blade of the caliper lies flat against an edge of the polygon, it forms an antipodal pair with the point or edge touching the opposite blade. The complete "rotation" of the caliper around the polygon detects all antipodal pairs; the set of all pairs, viewed as a graph, forms a thrackle. The method of rotating calipers can be interpreted as the projective dual of a sweep line algorithm in which the sweep is across slopes of lines rather than across - or -coordinates of points. History The rotating calipers method was first used in the dissertation of Michael Shamos in 1978. Shamos uses this method to generate all antipodal pairs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotating Caliper 3x2
Rotation, or spin, is the circular movement of an object around a ''axis of rotation, central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional object has an infinite number of possible central axes and rotational directions. If the rotation axis passes internally through the body's own center of mass, then the body is said to be ''autorotating'' or ''Angular momentum, spinning'', and the surface intersection of the axis can be called a ''geographical pole, pole''. A rotation around a completely external axis, e.g. the planet Earth around the Sun, is called ''revolving'' or ''orbiting'', typically when it is produced by gravity, and the ends of the rotation axis can be called the ''orbital poles''. Mathematics Mathematics, Mathematically, a rotation is a rigid body movement which, unlike a translation (geometry), translation, keeps a point fixed. This defini ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimum Width Of A Convex Polygon
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given range (the ''local'' or ''relative'' extrema), or on the entire domain (the ''global'' or ''absolute'' extrema). Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions. As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum. Definition A real-valued function ''f'' defined on a domain ''X'' has a global (or absolute) maximum point at ''x''∗, if for all ''x'' in ''X''. Similarly, the function has a global (or absolute) minimum point at ''x''∗, if for all ''x'' in ''X''. The value of the function at a m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smallest Enclosing Box
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, ''etc.'' of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is straightforward to find the smallest enclosing box that has sides parallel to the coordinate axes; the difficult part of the problem is to determine the orientation of the box. Two dimensions For the convex polygon, a linear time algorithm for the minimum-area enclosing rectangle is known. It is based on the observation that a side of a minimum-area enclosing box must be collinear with a side of the convex polygon. It is possible to enumerate boxes of this kind in linear time with the approach called rotating calipers by Godfried Toussaint in 1983.. The same approach is applicable for finding the minimum-perimeter enclosing rectangle ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Polygon
In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). Equivalently, a polygon is convex if every line that does not contain any edge intersects the polygon in at most two points. A strictly convex polygon is a convex polygon such that no line contains two of its edges. In a convex polygon, all interior angles are less than or equal to 180 degrees, while in a strictly convex polygon all interior angles are strictly less than 180 degrees. Properties The following properties of a simple polygon are all equivalent to convexity: *Every internal angle is strictly less than 180 degrees. *Every point on every line segment between two points inside or on the boundary of the polygon remains inside or on the boundary. *The polygon is entirely contained in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theory And Applications
A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings. In modern science, the term "theory" refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (" falsify") of it. Scientific theories are the most reliable, rigorous, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Critical Support Line
In geometry, a supporting line ''L'' of a curve ''C'' in the plane is a line that contains a point of ''C'', but does not separate any two points of ''C''."The geometry of geodesics", Herbert Busemannp. 158/ref> In other words, ''C'' lies completely in one of the two closed half-planes defined by ''L'' and has at least one point on ''L''. Properties There can be many supporting lines for a curve at a given point. When a tangent exists at a given point, then it is the unique supporting line at this point, if it does not separate the curve. Generalizations The notion of supporting line is also discussed for planar shapes. In this case a supporting line may be defined as a line which has common points with the boundary of the shape, but not with its interior."Encyclopedia of Distances", by Michel M. Deza, Elena Dezap. 179/ref> The notion of a supporting line to a planar curve or convex shape can be generalized to n dimension as a supporting hyperplane. Critical support lines If t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadrangulation
In graph theory, a branch of mathematics, a squaregraph is a type of undirected graph that can be drawn in the plane in such a way that every bounded face is a quadrilateral and every vertex with three or fewer neighbors is incident to an unbounded face. Related graph classes The squaregraphs include as special cases trees, grid graphs, gear graphs, and the graphs of polyominos. As well as being planar graphs, squaregraphs are median graphs, meaning that for every three vertices ''u'', ''v'', and ''w'' there is a unique median vertex ''m''(''u'',''v'',''w'') that lies on shortest paths between each pair of the three vertices.. See for a discussion of planar median graphs more generally. As with median graphs more generally, squaregraphs are also partial cubes: their vertices can be labeled with binary strings such that the Hamming distance between strings is equal to the shortest path distance between vertices. The graph obtained from a squaregraph by making a vertex for each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polygon Triangulation
In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) into a set of triangles, i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is . Triangulations may be viewed as special cases of planar straight-line graphs. When there are no holes or added points, triangulations form maximal outerplanar graphs. Polygon triangulation without extra vertices Over time, a number of algorithms have been proposed to triangulate a polygon. Special cases It is trivial to triangulate any convex polygon in linear time into a fan triangulation, by adding diagonals from one vertex to all other non-nearest neighbor vertices. The total number of ways to triangulate a convex ''n''-gon by non-intersecting diagonals is the (''n''−2)nd Catalan number, which equals :\frac, a formula found by Leonhard Euler. A monotone polygon can be triangulated in linear time with either the algorithm of A. Fournier and D.Y. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oriented Bounding Box
In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. The terms "box" and "hyperrectangle" come from their usage in the Cartesian coordinate system, where they are indeed visualized as a rectangle (two-dimensional case), rectangular parallelepiped (three-dimensional case), etc. In the two-dimensional case it is called the minimum bounding rectangle. Axis-aligned minimum bounding box The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Support Vector Machine
In machine learning, support vector machines (SVMs, also support vector networks) are supervised learning models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, Vapnik et al., 1997) SVMs are one of the most robust prediction methods, being based on statistical learning frameworks or VC theory proposed by Vapnik (1982, 1995) and Chervonenkis (1974). Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non- probabilistic binary linear classifier (although methods such as Platt scaling exist to use SVM in a probabilistic classification setting). SVM maps training examples to points in space so as to maximise the width of the gap between the two categories. New ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closest Pair Of Points Problem
The closest pair of points problem or closest pair problem is a problem of computational geometry: given n points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane was among the first geometric problems that were treated at the origins of the systematic study of the computational complexity of geometric algorithms. Time bounds Randomized algorithms that solve the problem in linear time are known, in Euclidean spaces whose dimension is treated as a constant for the purposes of asymptotic analysis. This is significantly faster than the O(n^2) time (expressed here in big O notation) that would be obtained by a naive algorithm of finding distances between all pairs of points and selecting the smallest. It is also possible to solve the problem without randomization, in random-access machine models of computation with unlimited memory that allow the use of the floor function, in near-linear O(n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |