Silver's Dichotomy
   HOME
*





Silver's Dichotomy
In descriptive set theory, a branch of mathematics, Silver's dichotomy (also known as Silver's theorem)S. G. Simpson, "Subsystems of Z2 and Reverse Mathematics", p.442. Appearing in G. Takeuti, ''Proof Theory'' (1987), ISBN 0 444 87943 9. is a statement about equivalence relations, named after Jack Silver.L. YanfangOn Silver's Dichotomy Ph.D thesis. Accessed 30 August 2022.Sy D. FriedmanConsistency of the Silver dichotomy in generalized Baire space Fundamenta Mathematicae (2014). Accessed 30 August 2022. Statement and history A relation is said to be coanalytic if its complement is an analytic set. Silver's dichotomy is a statement about the equivalence classes of a coanalytic equivalence relation, stating any coanalytic equivalence relation either has countably many equivalence classes, or else there is a perfect set of reals that are each incomparable to each other.A. KechrisNew Directions in Descriptive Set Theory(1999, p.165). Accessed 1 September 2022. In the latter case, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss of generality in considering Polish spaces of certain restricted form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a group operation or a topology) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jack Silver
Jack Howard Silver (23 April 1942 – 22 December 2016) was a set theorist and logician at the University of California, Berkeley. Born in Montana, he earned his Ph.D. in Mathematics at Berkeley in 1966 under Robert Vaught before taking a position at the same institution the following year. He held an Alfred P. Sloan Research Fellowship from 1970 to 1972. Silver made several contributions to set theory in the areas of large cardinals and the constructible universe ''L''. Contributions In his 1975 paper "On the Singular Cardinals Problem", Silver proved that if a cardinal ''κ'' is singular with uncountable cofinality and 2''λ'' = ''λ''+ for all infinite cardinals ''λ'' < ''κ'', then 2''κ'' = ''κ''+. Prior to Silver's proof, many mathematicians believed that a forcing argument would yield that the negation of the theorem is

Coanalytic Set
In the mathematical discipline of descriptive set theory, a coanalytic set is a set (typically a set of real numbers or more generally a subset of a Polish space) that is the complement of an analytic set (Kechris 1994:87). Coanalytic sets are also referred to as \boldsymbol^1_1 sets (see projective hierarchy In the mathematical field of descriptive set theory, a subset A of a Polish space X is projective if it is \boldsymbol^1_n for some positive integer n. Here A is * \boldsymbol^1_1 if A is analytic * \boldsymbol^1_n if the complement of A, X\set ...). References * Descriptive set theory {{settheory-stub, date=March 2006 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Analytic Set
In the mathematical field of descriptive set theory, a subset of a Polish space X is an analytic set if it is a continuous image of a Polish space. These sets were first defined by and his student . Definition There are several equivalent definitions of analytic set. The following conditions on a subspace ''A'' of a Polish space ''X'' are equivalent: *''A'' is analytic. *''A'' is empty or a continuous image of the Baire space ωω. *''A'' is a Suslin space, in other words ''A'' is the image of a Polish space under a continuous mapping. *''A'' is the continuous image of a Borel set in a Polish space. *''A'' is a Suslin set, the image of the Suslin operation. *There is a Polish space Y and a Borel set B\subseteq X\times Y such that A is the projection of B; that is, : A=\. *''A'' is the projection of a closed set in the cartesian product of ''X'' with the Baire space. *''A'' is the projection of a Gδ set in the cartesian product of ''X'' with the Cantor space. An alterna ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite comm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Set
In general topology, a subset of a topological space is perfect if it is closed and has no isolated points. Equivalently: the set S is perfect if S=S', where S' denotes the set of all Limit point, limit points of S, also known as the derived set of S. In a perfect set, every point can be approximated arbitrarily well by other points from the set: given any point of S and any neighborhood of the point, there is another point of S that lies within the neighborhood. Furthermore, any point of the space that can be so approximated by points of S belongs to S. Note that the term ''perfect space'' is also used, incompatibly, to refer to other properties of a topological space, such as being a Gδ space. As another possible source of confusion, also note that having the perfect set property is not the same as being a perfect set. Examples Examples of perfect subsets of the real line \mathbb are the empty set, all closed intervals, the real line itself, and the Cantor set. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harvey Friedman
__NOTOC__ Harvey Friedman (born 23 September 1948)Handbook of Philosophical Logic, , p. 38 is an American mathematical logician at Ohio State University in Columbus, Ohio. He has worked on reverse mathematics, a project intended to derive the axioms of mathematics from the theorems considered to be necessary. In recent years this has advanced to a study of Boolean relation theory, which attempts to justify large cardinal axioms by demonstrating their necessity for deriving certain propositions considered "concrete". Friedman earned his Ph.D. from the Massachusetts Institute of Technology in 1967, with a dissertation on ''Subsystems of Analysis''. His advisor was Gerald Sacks. Friedman received the Alan T. Waterman Award in 1984. He also assumed the title of Vising Scientist at IBM. He delivered the Tarski Lectures in 2007. In 1967, Friedman was listed in the ''Guinness Book of World Records'' for being the world's youngest professor when he taught at Stanford University at age ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Canonical Projection Map
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \,\sim\, on S, the of an element a in S, denoted by is the set \ of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by \,\sim\,, and is denoted by S / \sim. When the set S has some structure (such as a group operation or a topology) and the equivalence relation \,\sim\, is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reverse Mathematics
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones. The reverse mathematics program was foreshadowed by results in set theory such as the classical theorem that the axiom of choice and Zorn's lemma are equivalent over ZF set theory. The goal of reverse mathematics, however, is to study possible axioms of ordinary theorems of mathematics rather than possible axioms for set theory. Reverse mathematics is usually carried out using subsystems of second-order arithmetic,Simpson, Stephen G. (2009), Subsystems of second-order arithmetic, Perspectives in Logic (2nd ed.), Cambridge University Press, doi:10.1017/CBO9780511581007, ISBN 978 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]